×

Computing the algebraic relations of \(C\)-finite sequences and multisequences. (English) Zbl 1163.11084

A \(C\)-finite sequence over a field \(K\) is a function \(a:\mathbb{Z}\to K\) satisfying a linear homogeneous recurrence \(c_0a(n)+\cdots+c_sa(n+s)=0\) with \(c_0,\ldots,c_s\in K\) and \(c_0,c_s\not=0\). An algebraic relation over \(K\) among \(r\) \(C\)-finite sequences \(a_1,\ldots,a_r\) over \(K\) is a polynomial \(P(x_1,\ldots,x_r)\in K[x_1,\ldots,x_r]\) such that \(P(a_1(n),\ldots,a_r(n))=0\) for all \(n\in\mathbb{Z}\). All algebraic relations among \(a_1,\ldots,a_r\) form an ideal \(I=I(a_1,\ldots,a_r;K)\) of the ring \(K[x_1,\ldots,x_r]\). The authors present an algorithm for computing generators of \(I\) when \(K\) is the rational field \(\mathbb{Q}\). Combining this with the Gröbner basis method, the authors can determine whether a given sequence can be represented in terms of other given sequences.

MSC:

11Y16 Number-theoretic algorithms; complexity
11B37 Recurrences
Full Text: DOI

References:

[1] Adams, W. W.; Loustaunau, P., (An Introduction to Gröbner Bases. An Introduction to Gröbner Bases, Graduate Studies in Math., vol. 3 (1994), Amer. Math. Soc.: Amer. Math. Soc. New York) · Zbl 0803.13015
[2] Becker, T.; Weispfenning, V.; Kredel, H., Gröbner Bases (1993), Springer
[3] Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Universität Innsbruck; Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Universität Innsbruck · Zbl 1245.13020
[4] Cohen, H., A Course in Computational Algebraic Number Theory (1993), Springer · Zbl 0786.11071
[5] Everest, G.; van der Poorten, A.; Shparlinski, I.; Ward, T., (Recurrence Sequences. Recurrence Sequences, Mathematical Surveys and Monographs, vol. 104 (2003), American Mathematical Society) · Zbl 1033.11006
[6] Friendman, J., Problem B-785, The Fibonacci Quarterly, 33, 2 (1995)
[7] Furdui, O., Problem B-931, The Fibonacci Quarterly, 40, 1, 85 (2002)
[8] Ge, G., 1993. Algorithms related to multiplicative representations of algebraic numbers. Ph.D. Thesis, U.C. Berkeley; Ge, G., 1993. Algorithms related to multiplicative representations of algebraic numbers. Ph.D. Thesis, U.C. Berkeley
[9] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics (1994), Addison-Wesley · Zbl 0836.00001
[10] Hoggatt, V. E., Fibonacci and Lucas Numbers (1979), The Fibonacci Association · Zbl 0198.36903
[11] Karr, M., Summation in finite terms, Journal of the ACM, 28, 305-350 (1981) · Zbl 0494.68044
[12] Kauers, M., Zimmermann, B., 2007. Dependencies — A Mathematica package for computing algebraic dependencies of C-finite sequences. Tech. Rep., SFB F013, Johannes Kepler Universität (in preparation); Kauers, M., Zimmermann, B., 2007. Dependencies — A Mathematica package for computing algebraic dependencies of C-finite sequences. Tech. Rep., SFB F013, Johannes Kepler Universität (in preparation)
[13] Milne-Thomson, L. M., The Calculus of Finite Differences (1933), Macmillan and Co., ltd · Zbl 0008.01801
[14] Nemes, I.; Petkovšek, M., RComp: A mathematica package for computing with recursive sequences, Journal of Symbolic Computation, 20, 5-6, 745-753 (1995) · Zbl 0849.68067
[15] Salvy, B.; Zimmermann, P., Gfun: A Maple package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software, 20, 2, 163-177 (1994) · Zbl 0888.65010
[16] Schneider, C., 2001. Symbolic summation in difference fields. Ph.D. Thesis, RISC-Linz, Johannes Kepler Universität Linz; Schneider, C., 2001. Symbolic summation in difference fields. Ph.D. Thesis, RISC-Linz, Johannes Kepler Universität Linz
[17] Sloane, N. J.A.; Plouffe, S., The Encyclopedia of Integer Sequences (1995), Academic Press · Zbl 0845.11001
[18] Stanley, R. P., (Enumerative Combinatorics. Enumerative Combinatorics, Cambridge Studies in Advanced Mathematics 62, vol. 1 (1997), Cambridge University Press) · Zbl 0889.05001
[19] Sturmfels, B.; Weismantel, R.; Ziegler, G. M., Gröbner bases of lattices, corner polyhedra, and integer programming, Contributions to Algebra and Geometry, 36, 2, 281-298 (1995) · Zbl 0863.90115
[20] Zeilberger, D., A holonomic systems approach to special function identities, Journal of Computational and Applied Mathematics, 32, 321-368 (1990) · Zbl 0738.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.