×

Damage initiation and growth in metals. Comparison between modelling and tomography experiments. (English) Zbl 1162.74448

Damage in heterogeneous model materials was measured using high-resolution X-ray absorption tomography. The material consisted of an aluminium matrix containing 1% and 4% of spherical ceramic particles acting as nucleation sites for an interface decohesion mechanism of damage. The damage initiation stage was quantified using the global population of particles in the 4% material. A strain path change experiment was then applied to the 1% material. The sample was first deformed in tension in order to create elongated cavities and then compressed at 45ring operator to rotate and close these cavities. The results of a model based on the Rice and Tracey approach accounting for the presence of particles inside the cavities and calculating their rotation with assuming a linear hardening plastic behaviour of the matrix were compared with the observations. The model was modified to account for the damage initiation phase. It was shown to give a good global prediction of the void volume fraction provided that the physical, mechanical and morphological information are corresponding in the experimental and the model cases. The cavity rotation experiment was also shown to compare well with the calculation although only one cavity was sufficiently opened after compression to allow the comparison.

MSC:

74R20 Anelastic fracture and damage
74-05 Experimental work for problems pertaining to mechanics of deformable solids

References:

[1] \(\&\#60;\) http://www.esrf.fr/expfacilities/id19/homepage/id19homepage.html \(>\), web site, 2000.; \(\&\#60;\) http://www.esrf.fr/expfacilities/id19/homepage/id19homepage.html \(>\), web site, 2000.
[2] \(\&\#60;\) http://www.zirpro.com \(>\), web site, 2000.; \(\&\#60;\) http://www.zirpro.com \(>\), web site, 2000.
[3] Babout, L.; Maire, E.; Buffière, J. Y.; Fougères, R., Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites, Acta Materiala, 49, 2055-2063 (2001)
[4] Babout, L.; Maire, E.; Fougères, R., Damage initiation in model metallic materialsX-ray tomography and modelling, Acta Materiala, 52, 2475-2487 (2004)
[5] Benzerga, A.; Besson, J., Plastic potential for plastic anisotropic porous solids, Eur. J. Mech. A/Solids, 20, 397-434 (2001) · Zbl 1049.74017
[6] Beremin, F. M., Cavity formation from inclusions in ductile fracture of A508 steel, Metall. Trans., 12A, 723-731 (1981)
[7] Bilby, B. A.; Kolbuszewski, M. L., The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow, Proc. R. Soc. London A, 355, 335-353 (1977) · Zbl 0406.76086
[8] Boehler, J.-P., Lois de comportement anisotrope des milieux continus, J. Mécanique, 17, 2, 153-190 (1978) · Zbl 0401.73005
[9] Bordreuil, C., 2002. Un modèle numérique d’endommagement orthotrope pour des transformations finies. Ph.D. Thesis, Institut National des Sciences Appliquées, L.M.So.; Bordreuil, C., 2002. Un modèle numérique d’endommagement orthotrope pour des transformations finies. Ph.D. Thesis, Institut National des Sciences Appliquées, L.M.So.
[10] Bordreuil, C.; Boyer, J.-C.; Sallé, E., On modelling orientations changes in rigid plastic matrix, Model. Simul. Mater. Sci. Eng., 69, 119-138 (2003)
[11] Bordreuil, C.; Sallé, E.; Boyer, J.-C., A specific orthotropic damage model at finite strains, J. Mater. Proc. Technol., 69, 119-138 (2004)
[12] Budiansky, B., Hutchinson, J.W., Slutsky, D.R., 1982. Void growth and collapse in viscous solids, Mechanics of Solids, Pergamon, New York, pp. 13-46.; Budiansky, B., Hutchinson, J.W., Slutsky, D.R., 1982. Void growth and collapse in viscous solids, Mechanics of Solids, Pergamon, New York, pp. 13-46. · Zbl 0477.73091
[13] Buffière, J. Y.; Maire, E.; Cloetens, P.; Lormand, G.; Fougères, G., Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography, Acta Materiala, 47, 5, 1613-1625 (1999)
[14] Chu, C. C.; Needleman, A., Void nucleation in biaxially stretched sheets, J. Eng. Mater. Technol., 102, 249-256 (1980)
[15] Dafalias, Y., Issues on the constitutive formulation at large elastoplastic deformations, part 1kinematics, Acta Mechanica, 69, 119-138 (1987) · Zbl 0627.73047
[16] Dierickx, P.; Verdu, C.; Reynaud, A.; Fougères, R., A study of physico-chemical mechanisms responsible for damage of heat treated and as-cast ferritic spheroïdal graphite cast irons, Scripta Metall., 34, 261-268 (1996)
[17] Fleck, N., Hutchinson, J.W., 1986. Void growth in shear. Proc. R. Soc. London 41-54.; Fleck, N., Hutchinson, J.W., 1986. Void growth in shear. Proc. R. Soc. London 41-54.
[18] Gilormini, P.; Roudier, P.; Rougée, P., Les déformations cumulées tensorielles, C. R. Acad. Sci. Paris, 316, II, 1499-1504 (1993) · Zbl 0773.73015
[19] Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids-case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 290-297.; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids-case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 290-297. · Zbl 0796.73014
[20] Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth and flow rules for porous ductile media. J. Eng. Mater. Technol. 2-15.; Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth and flow rules for porous ductile media. J. Eng. Mater. Technol. 2-15.
[21] Huang, Y., Accurate dilatation rates for spherical voids in triaxial stress fields, J. Appl. Mech., 58, 1084-1085 (1991)
[22] Humphreys, F.J., 1989. In-situ sem studies of the fracture of aluminium particulate composites. In: Proceedings of EMAG MICRO 89. IOP Publishing Ltd., London, pp. 465-468.; Humphreys, F.J., 1989. In-situ sem studies of the fracture of aluminium particulate composites. In: Proceedings of EMAG MICRO 89. IOP Publishing Ltd., London, pp. 465-468.
[23] Kailasam, M.; Ponte-Castañeda, P., A general theory for linear and non-linear particulate media with microstructure evolution, J. Mech. Phys. Solids, 46, 427-465 (1998) · Zbl 0974.74502
[24] Leblond, J.-B.; Perrin, G.; Devaux, J., An improved gurson type model for hardenable ductile metals, Eur. J. Mech./A, 14, 499-527 (1995) · Zbl 0840.73021
[25] Lee, B.J., Mear, M.E., 1992. Axisymmetric deformation of power law solids containing a dilute concentration of aligned spheroidal voids. J. Mech. Phys. Solids 1805-1836.; Lee, B.J., Mear, M.E., 1992. Axisymmetric deformation of power law solids containing a dilute concentration of aligned spheroidal voids. J. Mech. Phys. Solids 1805-1836.
[26] Llorca, J.; Martin, A.; Ruiz, J.; Elices, M., Particulate fracture during deformation of a spray formed metal-matrix composite, Metall. Trans., 24A, 1575-1588 (1993)
[27] Maire, E.; Buffière, J. Y.; Salvo, L.; Blandin, J. J.; Ludwig, W.; Letang, J. M., On the application of X-ray microtomography in the field of materials science, Adv. Eng. Mater., 3, 8, 539-546 (2001)
[28] Manoharan, M.; Lewandowski, J. J., In situ deformation studies of an aluminium metal-matrix composite in a scanning electron microscope, Scripta Metall., 23, 1801-1804 (1989)
[29] Pardoen, T.; Hutchinson, J. W., An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467-2512 (2000) · Zbl 1005.74059
[30] Poza, P.; Llorca, J., Fracture toughness and fracture mechanisms of \(Al- \operatorname{Al}_2 O_3\) composites at cryogenic and elevated temperatures, Mater. Sci. Eng., 206A, 2, 183-193 (1996)
[31] Rice, J.R., Tracey, D.M., 1969. On the enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 201-217.; Rice, J.R., Tracey, D.M., 1969. On the enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 201-217.
[32] Rousselier, G., Finite deformation constitutive relations including ductile fracture damage, (Nemat-Nasser, Three Dimensional Constitutive Relations and Ductile Fracture (1981), Pergamon Press: Pergamon Press New York), 311-315
[33] Sarkar, J.; Kutty, T. R.G.; Konlon, K. T.; Wilkinson, D. S.; Embury, J. D.; Lloyd, D. J., Tensile and bending properties of aa5754 aluminum alloys, Mater. Sci. Eng. A, 316, 52-59 (2001)
[34] Semiatin, S. L.; Seetharaman, V.; Ghosh, A. K.; Shell, E. B.; Simon, M. P.; Fagin, P. N., Cavitation during hot tension testing of ti-6al-4v, Mater. Sci. Eng. A, 256, 91-110 (1998)
[35] Thomason, P. F., Ductile Fracture of Metals (1988), Pergamon Press: Pergamon Press New York
[36] Tvergaard, V., Needleman, A., 1984. Analysis of cup cone fracture in round tensile test bar. Acta Metall. 157-169.; Tvergaard, V., Needleman, A., 1984. Analysis of cup cone fracture in round tensile test bar. Acta Metall. 157-169.
[37] Verhaege, B.; Louchet, F.; Bréchet, Y.; Massoud, J. P., Damage and rupture mechanisms in an austenoferritic duplex steel, Acta Materiala, 45, 1811-1819 (1997)
[38] Wang, C.C., 1970. New theorem for isotropic function part 1 and part 2. Arch. Ration. Mech. An. 36, 166-223.; Wang, C.C., 1970. New theorem for isotropic function part 1 and part 2. Arch. Ration. Mech. An. 36, 166-223. · Zbl 0327.15030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.