×

Shear deformation effect in second-order analysis of frames subjected to variable axial loading. (English) Zbl 1162.74390

Summary: In this paper a boundary element method is developed for the second-order analysis of frames consisting of beams of arbitrary simply or multiply connected constant cross section, taking into account shear deformation effect. Each beam is subjected to an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the beam deflection, the axial displacement and to a stress function and solved employing a BEM approach. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress function using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S15 Boundary element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Chen WF and Atsura T (1977). Theory of beam-column, vol I. McGraw-Hill Inc, New York, NY
[2] Goto Y and Chen WF (1987). Second-order elastic analysis for frame design. ASCE J Struct Eng 113(7): 1501–1529 · doi:10.1061/(ASCE)0733-9445(1987)113:7(1501)
[3] Rutenberg A (1981). A direct P-delta analysis using standard plane frame computer programs. Comp Struct 14(1–2): 97–102 · doi:10.1016/0045-7949(81)90088-2
[4] Load and resistance factor design specifications for buildings (1994) American Institute of Steel Construction (AISC) Chicago, Ill
[5] Chajes A and Churchill JE (1987). Íonlinear frame analysis by finite element methods. ASCE J Struct Eng 113(6): 1221–1235 · doi:10.1061/(ASCE)0733-9445(1987)113:6(1221)
[6] Liew JYR and Chen WF (1994). Trends toward advanced analysis. In: Chenand, WF and Tom, S (eds) Advanced analysis of steel frames, pp 1–45. CRC Press Inc, Boca Raton
[7] Goto Y (1994). Second-order elastic analysis of frames. In: Chenand, WF and Tom, S (eds) Advanced analysis of steel frames, pp 47–90. CRC Press Inc, Boca Raton
[8] Vasek M (1993) The non-linear behaviour of large space bar and beam structures. In: Proceedings of Space Struct 4 Conf Thomas Telford Series, London, England vol 1, pp 665–673
[9] Kim E-S, Park M and Choi S-H (2001). Direct design of three dimensional frames using practical advanced analysis. Eng Struct 23: 1491–1502 · doi:10.1016/S0141-0296(01)00041-4
[10] Rubin H (1997). Uniform formulae of first- and second-order theory for skeletal structures. Eng Struct 19(11): 903–909 · doi:10.1016/S0141-0296(97)00174-0
[11] Torkamani M, Sommez M and Cao J (1997). Second-order elastic plane-frame analysis using finite-element method. J Struct Eng ASCE 123(9): 1225–1235 · doi:10.1061/(ASCE)0733-9445(1997)123:9(1225)
[12] Kim E-S, Lee J and Park J-S (2003). 3-D second-order plastic analysis accounting for local buckling. Eng Struct 25: 81–90 · doi:10.1016/S0141-0296(02)00122-0
[13] Kim E-S and Choi S-H (2005). Practical second-order inelastic analysis for three-dimensional steel frames subjected to distributed load. Thin-Walled Struct 43: 135–160 · doi:10.1016/j.tws.2004.09.001
[14] Kim E-S, Lee J and Kim E-S (2004). Practical second-order inelastic analysis for steel frames subjected to distributed load. Eng Struct 26: 51–61 · doi:10.1016/j.engstruct.2003.08.010
[15] Kim E-S, Ngo-Huu C and Lee D-H (2006). Second-order inelastic dynamic analysis of 3-D steel frames. Int J Solids Struct 43(6): 1693–1709 · Zbl 1120.74512 · doi:10.1016/j.ijsolstr.2005.06.018
[16] Machado PS and Cortinez VH (2005). Lateral buckling of thin-walled composite bisymmetric beams with prebuckling and shear deformation. Eng Struct 27: 1185–1196 · doi:10.1016/j.engstruct.2005.02.018
[17] Bach C and Baumann R (1924). Elastizität und Festigkeit, 9th edn. Springer, Berlin · JFM 50.0554.10
[18] Stojek D (1964). Zur Schubverformung im Biegebalken. Zeitschrift für Angewandte Mathematik und Mechanik 44: 393–396 · doi:10.1002/zamm.19640440809
[19] Timoshenko SP and Goodier JN (1984). Theory of elasticity, 3rd edn. McGraw-Hill, New York
[20] Cowper GR (1966). The shear coefficient in Timoshenko’s beam theory. J Appl Mech ASME 33(2): 335–340 · Zbl 0151.37901
[21] Schramm U, Kitis L, Kang W and Pilkey WD (1994). On the shear deformation coefficient in beam theory. Finite Elem Anal Des 16: 141–162 · Zbl 0804.73024 · doi:10.1016/0168-874X(94)00008-5
[22] Schramm U, Rubenchik V and Pilkey WD (1997). Beam stiffness matrix based on the elasticity equations. Int J Numer Methods Eng 40: 211–232 · doi:10.1002/(SICI)1097-0207(19970130)40:2<211::AID-NME58>3.0.CO;2-P
[23] Stephen NG (1980). Timoshenko’s shear coefficient from a beam subjected to gravity loading. ASME J Appl Mech 47: 121–127 · Zbl 0436.73057 · doi:10.1115/1.3153589
[24] Hutchinson JR (2001). Shear coefficients for Timoshenko beam theory. ASME J Appl Mech 68: 87–92 · Zbl 1110.74489 · doi:10.1115/1.1349417
[25] Schramm U, Rubenchik V and Pilkey WD (1997). Beam stiffness matrix based on the elasticity equations. Int J Numer Methods Eng 40: 211–232 · doi:10.1002/(SICI)1097-0207(19970130)40:2<211::AID-NME58>3.0.CO;2-P
[26] Sapountzakis EJ and Mokos VG (2005). A BEM solution to transverse shear loading of beams. Comput Mech 36: 384–397 · Zbl 1138.74413 · doi:10.1007/s00466-005-0677-2
[27] Ramm E and Hofmann TJ (1995). Stabtragwerke, Der Ingenieurbau. In: Mehlhorn, G (eds) Band Baustatik/Baudynamik, pp. Ernst& Sohn, Berlin
[28] Katsikadelis JT (2002). The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Theor Appl Mech 27: 13–38 · Zbl 1051.74052 · doi:10.2298/TAM0227013K
[29] Katsikadelis JT and Tsiatas GC (2003). Large deflection analysis of beams with variable stiffness. Acta Mech 164: 1–13 · Zbl 1064.74116 · doi:10.1007/s00707-003-0015-8
[30] Gaul L and Fiedler C (1997). Methode der Randelemente in Statik und Dynamik. Vieweg, Braunschweig-Wiesbaden · Zbl 0877.73001
[31] Isaacson E and Keller HB (1966). Analysis of numerical methods. Wiley, New York · Zbl 0168.13101
[32] Sapountzakis EJ and Katsikadelis JT (1992). Unilaterally supported plates on elastic foundations by the boundary element method. J Appl Mech Trans ASME 59: 580–586 · doi:10.1115/1.2893763
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.