×

Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem cells. (English) Zbl 1162.35041

A chemotaxis model for the migration of hematopoietic stem cells towards the cell stem niche is proposed, the migration resulting from the presence of stroma cells in the niche which produces a chemical attracting the hematopoietic stem cells. More precisely, assuming the niche to be located on a part \(\Gamma_1\) of the boundary of the domain, the concentrations of the hematopoietic stem cells \(s\), the chemoattractant \(a\), and the stroma cells \(b\) solve the following system \[ \begin{aligned} \partial_t s = & \nabla\cdot \left( \varepsilon\;\nabla s - s\;\nabla\chi(a) \right)\,, \quad (t,x)\in (0,T)\times\Omega\,, \\ \partial_t a = & D_a\;\Delta a - \gamma\;a\;s\,, \quad (t,x)\in (0,T)\times\Omega\,,\end{aligned} \] supplemented with the boundary conditions \[ \begin{aligned} - \left( \varepsilon\;\partial_\nu s - s\;\partial_\nu \chi(a) \right) = & (c_1\;s - c_2\;b)\;\mathbf{1}_{\Gamma_1}\,, \\ D_a\;\partial_\nu a = & \beta(t,b,x)\;\mathbf{1}_{\Gamma_1}\,, \end{aligned} \] the evolution of \(b\) being given by \(\partial_t b = c_1\;s - c_2\;b\) for \((t,x)\in (0,T)\times\Gamma_1\) and \(b=0\) for \((t,x)\in (0,T)\times\Gamma_2\). Assuming that \(\beta\) is bounded and \(\chi\) Lipschitz continuous, the local existence and uniqueness of a weak solution is established. Some numerical simulations are performed to illustrate the expected migration of the cells.

MSC:

35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35K55 Nonlinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Aiuti A., Webb I.J., Bleul C., Springer T. and Gutierrez-Ramos J.C. (1997). The Chemokine SDF-1 Is a Chemoattractant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitors to Peripheral Blood. J. Exp. Med. 185: 111–120 · doi:10.1084/jem.185.1.111
[2] Evans L. (1999). Partial Differential Equations. AMS, Providence · Zbl 0954.35011
[3] Gajewski H., Gröger K. and Zacharias K. (1974). Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin · Zbl 0289.47029
[4] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, 24, Pitman (1985) · Zbl 0695.35060
[5] Horstmann D. (2004). From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105: 103–165 · Zbl 1071.35001
[6] Jäger W. and Luckhaus S. (1992). On explosions of solutions to a system of partial differential equations. Trans. AMS 329: 819–824 · Zbl 0746.35002 · doi:10.2307/2153966
[7] Kettemann A. (2006). Die lokale Existenz und Eindeutigkeit der Lösung eines Chemotaxis-Modells für hämatopoietische Stammzellen. Universität Stuttgart, Diplomarbeit
[8] Ladyženskaya, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Translations of Mathematical Monographs, 23 (1968)
[9] Lions J. (1969). Quelque méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris
[10] Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. 1, Springer, Heidelberg (1972) · Zbl 0227.35001
[11] Nagai T. (1995). Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5: 581–601 · Zbl 0843.92007
[12] Neuss-Radu M. and Kettemann A. (2006). A mathematical model for stroma controlled chemotaxis of hematopoietic stem cells. Oberwolfach Rep. 24: 59–62
[13] Post, K.: A system of non-linear partial differential equations modeling chemotaxis with sensitivity functions. Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, electronic (1999) · Zbl 1032.92006
[14] Wagner W., Saffrich R., Wrikner U., Eckstein V., Blake J., Ansorge A., Schwager C., Wein F., Miesala K., Ansorge W. and Ho A.D. (2005). Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 23: 1180–1191 · doi:10.1634/stemcells.2004-0361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.