×

On a sum involving Fourier coefficients of cusp forms. (English) Zbl 1162.11337

Lith. Math. J. 46, No. 4, 459-474 (2006) and Liet. Mat. Rink. 46, No. 4, 565-583 (2006).
Let \(x \geq x_0\) (\(x_0\) is a sufficiently large real number), and, for integers \(j \geq 1\), define \[ S_j(x)=\sum_{n \leq x} a(n^j), \] where \(a(n^j)\) is the \(n^j\)-th Fourier coefficient of the normalized Hecke eigenform \(f(z)\) defined over the full modular group \(\text{SL}(2,\mathbb Z)\). Then the author improves the upper bound for the quantity \(| \sum_{n \leq x}a(n^2)| \), i.e., he obtains that the estimate \[ S_2(x) \ll x^{3/4}(\log x)^{19/2}\log\log x \] holds uniformly for any holomorphic cusp form \(f^*(z)\) of even integral weight \(k\) (with a Hecke eigenform \(f(z)\)) for the full modular group satisfying \(k \ll x^{1/3}(\log x)^{22/3}\), and the implied constant is effective.

MSC:

11F30 Fourier coefficients of automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F11 Holomorphic modular forms of integral weight
Full Text: DOI

References:

[1] R. Balasubramanian, An improvement of a theorem of Titchmarsh on the mean-square of |{\(\zeta\)}(1/2+it|, Proc. London Math. Soc., 36(3), 540–576 (1978). · Zbl 0375.10025 · doi:10.1112/plms/s3-36.3.540
[2] R. Balasubramanian and K. Ramachandra, Effective and non-effective results on certain arithmetical functions, J. Number Theory, 12, 10–19 (1980). · Zbl 0428.10023 · doi:10.1016/0022-314X(80)90068-2
[3] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple Gamma factors and the average order of arithmetical functions, Ann. Math., 76, 93–136 (1962). · Zbl 0211.37901 · doi:10.2307/1970267
[4] K. Chandrasekharan and R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math Ann., 152, 30–64 (1963). · Zbl 0116.27001 · doi:10.1007/BF01343729
[5] P. Deligne, Formes modulaires et représention -adiques, Sém. Bourbaki, (1968/69), exposés 355.
[6] P. Deligne, La conjecture de Weil-I, Inst. Hautes Études Sci. Pub. Math., 43, 273–307 (1974). · Zbl 0287.14001 · doi:10.1007/BF02684373
[7] O. M. Fomenko, Identities involving the coefficients of automorphic L-functions, Zap. Nauchn. Semin., 314, 247–256, 290 (2004). · Zbl 1094.11018
[8] D. R. Heath-Brown, The twelfth power moment of the Riemann zeta-function, Quart. J. Math., Oxford II Series, 29, 443–462 (1978). · Zbl 0394.10020 · doi:10.1093/qmath/29.4.443
[9] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112, 664–699 (1936). · Zbl 0014.01601 · doi:10.1007/BF01565437
[10] E. Hecke, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittlegeraden, München Akad. Sitsungsber, II, 8, 73–95 (1937).
[11] M. N. Huxley and M. Jutila, Large values of Dirichlet polynomials-IV, Acta Arith., 32, 297–312 (1977). · Zbl 0352.10019
[12] A. Ivić, The Riemann Zeta-function, Wiley (1985).
[13] A. Ivić, On sums of Fourier coefficients of cusp form, in: IV Internat. Conf. Modern Problems of Number Theory and its Applications: Current Problem, Part II (Tula, 2001), Mosk. Gos. Univ. im. Lomonosova, Mekh-Mat. Fak., Moscow (2002), pp. 92–97 (in Russian).
[14] A. Ivić, K. Matsumoto, and Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, Math Proc. Cambridge Philos. Soc., 127, 117–131 (1999). · Zbl 0958.11065 · doi:10.1017/S0305004199003564
[15] A. Ivić and Y. Motohashi, The mean square of the error term for the fourth power moment of the zeta-function, in: Proc. London Math. Soc., 69(3), (1994), pp. 309–329. · Zbl 0805.11060 · doi:10.1112/plms/s3-69.2.309
[16] H. Iwaniec, Topics in classical automorphic forms, AMS Providence, 17, Rhode Island (1997). · Zbl 0905.11023
[17] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Publ. Math. IHES., 91, 55–131 (2000). · Zbl 1012.11041
[18] H. Maier and H. L. Montgomery, The sum of the Möbius function, Preprint. · Zbl 1241.11121
[19] K. Matsumoto, The mean-values and the universality of Rankin-Selberg L-functions, in: Proc. on Number Theory (Turku Conference), M. Jutila and T. Metsänkylä (Eds.), Walter de Gruyter (2001), pp. 201–221. · Zbl 0972.11075
[20] K. Matsumoto and A. Sankaranarayanan, On the mean square of standard L-functions attached to Ikeda lifts, Math. Z., (online on 23 February 2006, to appear in print). · Zbl 1191.11016
[21] H. L. Montgomery, Mean and large values of Dirichlet polynomials, Inventiones Math., 8, 334–345 (1969). · Zbl 0204.37301 · doi:10.1007/BF01404637
[22] H. L. Montgomery and R. C. Vaughan, Hilberts inequality, J. London Math. Soc., 8(2), 73–82 (1974). · Zbl 0281.10021 · doi:10.1112/jlms/s2-8.1.73
[23] K. Ramachandra, A simple proof of the mean fourth power estimate for {\(\zeta\)}(1/2 + it) and L(1/2 + it, {\(\chi\)}), Annali. della. Scoula Normale Superiore di Pisa, Classe di Sci., Ser IV, 1, 81–97 (1974).
[24] K. Ramachandra, Application of a theorem of Montgomery and Vaughan to the zeta-function, J. London Math. Soc., 10, 482–486 (1975). · Zbl 0304.10024 · doi:10.1112/jlms/s2-10.4.482
[25] K. Ramachandra, Some problems of analytic number Theory-I, Acta Arith., 31, 313–324 (1976). · Zbl 0291.10034
[26] K. Ramachandra, Some remarks on a theorem of Montgomery and Vaughan, J. Number Theory, 11, 465–471 (1979). · Zbl 0408.10028 · doi:10.1016/0022-314X(79)90011-8
[27] K. Ramachandra, A remark on Perron’s formula, J. Indian Math. Soc., 65, 145–151 (1998). · Zbl 1074.11519
[28] K. Ramachandra and A. Sankaranarayanan, On an asymptotic formula of Srinivasa Ramanujan, Acta Arith., 109, 349–357 (2003). · Zbl 1036.11045 · doi:10.4064/aa109-4-5
[29] R. A. Rankin, Contributions to the theory of Ramanujan’s function {\(\tau\)}(n) and similar arithmetical functions-I, in: Proc. Cambridge Philos. Soc., vol. 35 (1939), pp. 351–356. · Zbl 0021.39201 · doi:10.1017/S0305004100021095
[30] R. A. Rankin, Contributions to the theory of Ramanujan’s function {\(\tau\)}(n) and similar arithmetical functions-II, in: Proc. Cambridge Philos. Soc., vol. 35 (1939), pp. 357–372. · Zbl 0021.39202 · doi:10.1017/S0305004100021101
[31] A. Sankaranarayanan, Zeros of quadratic zeta-functions on the critical line, Acta Arith., 69, 21–38 (1995). · Zbl 0819.11032
[32] A. Sankaranarayanan, Fundamental properties of symmetric square L-functions-I, Illinois J. Math., 46, 23–43 (2002). · Zbl 1116.11032
[33] A. Selberg, Contributions to the theory of the Riemann zeta-function, in: Collected Papers, vol. I, Springer (1989), pp. 214–280.
[34] G. Shimura, On the holomorphy of certain Dirichlet series, in: Proc. London Math. Soc., vol. 31 (1975), pp. 79–98. · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[35] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., D. R. Heath-Brown (Ed.), Clarendon Press, Oxford (1986). · Zbl 0601.10026
[36] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, 15, Berlin (1963). · Zbl 0146.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.