×

Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop. II. (English) Zbl 1161.34329

Summary: We consider Liénard equations of the form
\[ \begin{cases} \dot x=y,\\ \dot y=-(x-2x^3+x^5)-\varepsilon(\alpha+\beta x^2+\gamma x^4)y\end{cases} \]
where \(0<|\varepsilon|\ll 1\), \((\alpha,\beta,\gamma)\in\Lambda\subset \mathbb R^3\) and \(\Lambda\) is bounded. We prove that the least upper bound for the number of zeros of the related abelian integrals
\[ I(h)=\oint_{\Gamma_h}(\alpha+\beta x^2+\gamma x^4)y\,dx \]
for \(h\in (1/6,\infty)\) is three and for \(h\in (0,\infty)\) is four (counted with multiplicity) for all parameters \(\alpha,\beta\) and \(\gamma\). This implies that the number of limit cycles that bifurcated from periodic orbits of the unperturbed system for \(\varepsilon=0\) outside an eye-figure loop is less than or equal to three.
For part I, cf. ibid. 68, No. 10 (A), 2957–2976 (2008; Zbl 1158.34024).

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C08 Ordinary differential equations and connections with real algebraic geometry (fewnomials, desingularization, zeros of abelian integrals, etc.)
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations

Citations:

Zbl 1158.34024
Full Text: DOI

References:

[1] Arnold, V. I., Geometrical Method in Theory of Ordinary Differential Equation (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0507.34003
[2] Arnold, V. I., Ten problems, Adv. Soviet Math., 1, 1-8 (1990) · Zbl 0729.58002
[3] Asheghi, R.; Zangeneh, H. R.Z., Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop, Nonlinear Anal. (2007) · Zbl 1158.34024
[4] Christopher, C.; Lloyd, N., Small-amplitude limit cycles in Lieńard systems, Nonlinear Differential Equations Appl., 3, 2, 183-190 (1996) · Zbl 0855.34030
[5] Dumortier, F.; Kooij, R. E.; Li, C., Cubic Liénard equations with quadratic damping having two antisaddles, Qual. Theory Dyn. Syst., 1, 2, 163-209 (2000) · Zbl 1025.34029
[6] Dumortier, F.; Li, C., Perturbation from an elliptic Hamiltonian of degree four, II. Cuspidal loop, J. Differential Equations, 175, 209-243 (2001) · Zbl 1034.34036
[7] Dumortier, F.; Li, C., Perturbation from an elliptic Hamiltonian of degree four, III. Global center, J. Differential Equations, 188, 473-511 (2003) · Zbl 1056.34044
[8] Dumortier, F.; Li, C., Perturbation from an elliptic Hamiltonian of degree four, IV. Figure eight-loop, J. Differential Equations, 188, 512-554 (2003) · Zbl 1057.34015
[9] Dumortier, F.; Roussarie, R., Bifurcations of cuspidal loops, Nonlinearity, 10, 1369-1408 (1997) · Zbl 0908.58043
[10] Dumortier, F.; Roussarie, R.; Sotomayor, J., Generic 3-parameter families of planar vector fields, (Unfoldings of Saddle, Focus and Elliptic Singularities with Nilpotent Linear Parts. Unfoldings of Saddle, Focus and Elliptic Singularities with Nilpotent Linear Parts, Lecture Notes in Mathematics, vol. 1480 (1991), Springer-Verlag: Springer-Verlag Berlin, New York), 1-164 · Zbl 0755.58002
[11] Dumortier, F.; Rousseau, C., Cubic Lieńard equations with linear damping, Nonlinearity, 3, 1015-1039 (1990) · Zbl 0716.58023
[12] Gavrilov, L., The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math., 143, 3, 449-497 (2001) · Zbl 0979.34024
[13] Horozov, E.; Iliev, I., On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. Lond. Math. Soc., 69, 198-224 (1994) · Zbl 0802.58046
[14] Horozov, E.; Iliev, I. D., Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11, 1521-1537 (1998) · Zbl 0921.58044
[15] Ilyashenko, Yu. S., Finiteness for limit cycles, (Transl. Math. Monographs, vol. 94 (1991), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0811.58051
[16] Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos, 13, 1, 47-106 (2003) · Zbl 1063.34026
[17] Li, C.; Zhang, Z., Remarks on 16th weak Hilbert problem for \(n = 2\), Nonlinearity, 15, 1975-1992 (2002) · Zbl 1219.34042
[18] Lins, A.; de Melo, W.; Pugh, C., On Lieńard’s equations, (Geometry and Topology. Geometry and Topology, Lecture Notes in Mathematics, vol. 597 (1977), Springer-Verlag: Springer-Verlag Berlin, New York), 335-357 · Zbl 0362.34022
[19] Novikov, D.; Yakovenko, S., Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Anounc. Amer. Math. Soc., 5, 55-65 (1999) · Zbl 0922.58076
[20] Roussarie, R., On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Mat., 17, 67-101 (1986) · Zbl 0628.34032
[21] Zhao, Y.; Zhang, Z., Abelian integrals for cubic vector fields, Ann. Math. Pure Appl., 176, 251-272 (1999) · Zbl 0958.34026
[22] Zhao, Y.; Zhang, Z., Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations, 155, 73-88 (1999) · Zbl 0961.34016
[23] Zhang, T.; Tadé, M. O.; Tian, Y. C., On the zeros of the Abelian integrals for a class of Liénard systems, Phys. Lett. A, 358, 4, 262-274 (2006) · Zbl 1142.34327
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.