×

Homology exponents for \(H\)-spaces. (English) Zbl 1160.57034

In this paper, a space \(X\) admits a homology exponent if there exists an integer \(k\) such that \(2^k. T_2 H^*(X;{\mathbb Z})=0\), where \(T_2\) is the 2-torsion subgroup. The authors study connected \(H\)-spaces \(X\) of finite type which admits a homology exponent. They prove that – \(X\) is, up to 2-completion, a product of spaces of the form \(B{\mathbb Z}/2^r\), \(S^1\), \({\mathbb C}P^{\infty}\) and \(K({\mathbb Z},3)\) or \(X\) admit infinitely many non-trivial homotopy groups and \(k\)-invariants – if \(X\) is simply connected and \(H^*(X;F_2)\) finitely generated as an algebra over the Steenrod algebra, then \(X\) is, up to 2-completion, the product of a mod 2 finite \(H\)-space with copies of \({\mathbb C}P^{\infty}\) and \(K({\mathbb Z},3)\).

MSC:

57T25 Homology and cohomology of \(H\)-spaces
55S45 Postnikov systems, \(k\)-invariants
55P20 Eilenberg-Mac Lane spaces
55S10 Steenrod algebra
55T10 Serre spectral sequences
55T20 Eilenberg-Moore spectral sequences

References:

[1] Bousfield, A. K.: Nice homology coalgebras. Trans. Amer. Math. Soc. 148 (1970), 473-489. · Zbl 0199.33302 · doi:10.2307/1995384
[2] Bousfield, A. K.: Localization and periodicity in unstable homotopy. J. Amer. Math. Soc. 7 (1994), no. 4, 831-873. JSTOR: · Zbl 0839.55008 · doi:10.2307/2152734
[3] Browder, W.: Torsion in \(H\)-spaces. Ann. of Math. (2) 74 (1961), 24-51. JSTOR: · Zbl 0112.14501 · doi:10.2307/1970305
[4] Cartan, H.: Algèbres d’Eilenberg-MacLane et homotopie. In Séminaire Henri Cartan de l’Ecole Normale Supérieure (1954-1955) , exposés 2-16. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955.
[5] Castellana, N., Crespo, J. A. and Scherer, J.: Deconstructing Hopf spaces. Invent. Math. 167 (2007), no. 1, 1-18. · Zbl 1109.55005 · doi:10.1007/s00222-006-0518-8
[6] Castellana, N., Crespo, J. A. and Scherer, J.: On the cohomology of highly connected covers of finite Hopf spaces. Adv. Math. 215 (2007), no. 1, 250-262. · Zbl 1126.57016 · doi:10.1016/j.aim.2007.03.011
[7] Clément, A.: Integral cohomology of finite Postnikov towers. Ph. D. Thesis, University of Lausanne, Switzerland, 2002.
[8] Clément, A.: Integral cohomology of 2-local Hopf spaces with at most two non-trivial finite homotopy groups. In An alpine anthology of homotopy theory , 87-99. Contemp. Math. 399 . Amer. Math. Soc., Providence, RI, 2006. · Zbl 1096.57021
[9] Dwyer, W. G. and Wilkerson, C. W.: Spaces of null homotopic maps. Astérisque 191 (1990), no. 6, 97-108. International Conference on Homotopy Theory (Marseille-Luminy, 1988). · Zbl 0731.55009
[10] Dwyer, W. G.: The centralizer decomposition of \(BG\). In Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guí xols, 1994) , 167-184. Progr. Math. 136 . Birkhäuser, Basel, 1996. · Zbl 0921.55013
[11] Evens, L.: The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101 (1961), 224-239. JSTOR: · Zbl 0104.25101 · doi:10.2307/1993372
[12] Félix, Y., Halperin, S., Lemaire, J. M. and Thomas, J. C.: Mod \(p\) loop space homology. Invent. Math. 95 (1989), no. 2, 247-262. · Zbl 0667.55007 · doi:10.1007/BF01393897
[13] Félix, Y., Halperin, S. and Thomas, J. C.: Torsion in loop space homology. J. Reine Angew. Math. 432 (1992), 77-92. · Zbl 0749.55003
[14] Ganea, T.: A generalization of the homology and homotopy suspension. Comment. Math. Helv. 39 (1965), 295-322. · Zbl 0142.40702 · doi:10.1007/BF02566956
[15] Grodal, J.: The transcendence degree of the mod \(p\) cohomology of finite Postnikov systems. In Stable and unstable homotopy (Toronto, ON, 1996) , 111-130. Fields Inst. Commun. 19 . Amer. Math. Soc., Providence, RI, 1998. · Zbl 0905.55012
[16] Hubbuck, J. R. and Kane, R.: On \(\pi _3\) of a finite \(H\)-space. Trans. Amer. Math. Soc. 213 (1975), 99-105. · Zbl 0312.55013 · doi:10.2307/1998038
[17] Kane, R.: The homology of Hopf spaces. North-Holland Mathematical Library 40 . North-Holland Publishing Co., Amsterdam, 1988.
[18] Kane, R.: Personal communication. November 2006.
[19] Klaus, S.: A generalization of the non-triviality theorem of Serre. Proc. Amer. Math. Soc. 130 (2002), no. 5, 1249-1256 (electronic). JSTOR: · Zbl 0989.19001 · doi:10.1090/S0002-9939-01-06441-3
[20] Levi, R.: On finite groups and homotopy theory. Mem. Amer. Math. Soc. 118 (1995), no. 567. · Zbl 0861.55002
[21] Lannes, J. and Schwartz, L.: À propos de conjectures de Serre et Sullivan. Invent. Math. 83 (1986), no. 3, 593-603. · Zbl 0563.55011 · doi:10.1007/BF01394425
[22] Miller, H.: The Sullivan conjecture on maps from classifying spaces. Ann. of Math. (2) 120 (1984), no. 1, 39-87. JSTOR: · Zbl 0552.55014 · doi:10.2307/2007071
[23] Milnor, J. W. and Moore, J. C.: On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211-264. JSTOR: · Zbl 0163.28202 · doi:10.2307/1970615
[24] McGibbon, C. A. and Neisendorfer, J. A.: On the homotopy groups of a finite-dimensional space. Comment. Math. Helv. 59 (1984), no. 2, 253-257. · Zbl 0538.55010 · doi:10.1007/BF02566349
[25] Schwartz, L.: Unstable modules over the Steenrod algebra and Sullivan’s fixed point set conjecture. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1994. · Zbl 0871.55001
[26] Selick, P.: Moore conjectures. In Algebraic topology–rational homotopy (Louvain-la-Neuve, 1986) , 219-227. Lecture Notes in Math. 1318 . Springer, Berlin, 1988. · Zbl 0665.55008 · doi:10.1007/BFb0077805
[27] Serre, J. P.: Cohomologie modulo \(2\) des complexes d’Eilenberg-MacLane. Comment. Math. Helv. 27 (1953), 198-232. · Zbl 0052.19501 · doi:10.1007/BF02564562
[28] Smith, L.: Lectures on the Eilenberg-Moore spectral sequence. Lecture Notes in Mathematics 134 . Springer-Verlag, Berlin-New York, 1970. · Zbl 0197.19702 · doi:10.1007/BFb0082690
[29] Spanier, E. H.: Algebraic topology. Springer-Verlag, New York-Berlin, 1981. Corrected reprint. · Zbl 0145.43303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.