×

Mathematical foundation of quantum annealing. (English) Zbl 1159.81332

Summary: Quantum annealing is a generic name of quantum algorithms to use quantum-mechanical fluctuations to search for the solution of optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundation of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence both for the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.
Editorial remark: No review copy delivered.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81P68 Quantum computation
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
90C27 Combinatorial optimization
90C59 Approximation methods and heuristics in mathematical programming

References:

[1] Garey M. R., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979) · Zbl 0411.68039
[2] DOI: 10.1002/3527606734 · Zbl 1094.82002 · doi:10.1002/3527606734
[3] DOI: 10.1016/S0377-2217(99)00284-2 · Zbl 0969.90073 · doi:10.1016/S0377-2217(99)00284-2
[4] DOI: 10.1126/science.220.4598.671 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[5] Aarts E., Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing (1984) · Zbl 0674.90059
[6] DOI: 10.1016/0009-2614(94)00117-0 · doi:10.1016/0009-2614(94)00117-0
[7] DOI: 10.1103/PhysRevE.58.5355 · doi:10.1103/PhysRevE.58.5355
[8] T. Kadowaki, ”Study of optimization problems by quantum annealing,” PhD thesis, Tokyo Institute of Technology, 1999; · Zbl 1149.76422
[9] DOI: 10.1007/11526216 · doi:10.1007/11526216
[10] DOI: 10.1088/0305-4470/39/36/R01 · Zbl 1130.49037 · doi:10.1088/0305-4470/39/36/R01
[11] DOI: 10.1016/0304-4149(89)90040-9 · Zbl 0683.90067 · doi:10.1016/0304-4149(89)90040-9
[12] B. Apolloni, N. Cesa-Bianchi, and D. de Falco, in Stochastic Processes, Physics and Geometry, edited by S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, and R. Moresi (World Scientific, Singapore, 1990), p. 97.
[13] DOI: 10.1126/science.1068774 · doi:10.1126/science.1068774
[14] DOI: 10.1103/PhysRevB.66.094203 · doi:10.1103/PhysRevB.66.094203
[15] DOI: 10.1143/JPSJ.74.1649 · doi:10.1143/JPSJ.74.1649
[16] DOI: 10.1088/1742-5468/2006/01/P01008 · doi:10.1088/1742-5468/2006/01/P01008
[17] DOI: 10.1103/PhysRevE.75.051112 · doi:10.1103/PhysRevE.75.051112
[18] DOI: 10.1103/PhysRevE.70.057701 · doi:10.1103/PhysRevE.70.057701
[19] DOI: 10.1103/PhysRevB.72.014303 · doi:10.1103/PhysRevB.72.014303
[20] DOI: 10.1103/PhysRevB.73.144302 · doi:10.1103/PhysRevB.73.144302
[21] DOI: 10.1103/PhysRevE.72.026701 · doi:10.1103/PhysRevE.72.026701
[22] DOI: 10.2307/2033649 · Zbl 0099.10401 · doi:10.2307/2033649
[23] DOI: 10.1143/PTP.46.1337 · Zbl 1098.82551 · doi:10.1143/PTP.46.1337
[24] Landau D. P., A Guide to Monte Carlo Simulations in Statistical Physics (2000) · Zbl 0998.82504
[25] DOI: 10.1103/PhysRevLett.99.070502 · doi:10.1103/PhysRevLett.99.070502
[26] S. Morita, ”Analytic study of quantum annealing,” PhD thesis, Tokyo Institute of Technology, 2008.
[27] DOI: 10.1143/JPSJ.76.064002 · Zbl 1223.82044 · doi:10.1143/JPSJ.76.064002
[28] Messiah A., Quantum Mechanics (1976)
[29] DOI: 10.1103/PhysRevLett.99.030603 · Zbl 1229.82016 · doi:10.1103/PhysRevLett.99.030603
[30] Hopf E., J. Math. Mech. 12 pp 683– (1963)
[31] DOI: 10.1109/TPAMI.1984.4767596 · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[32] DOI: 10.1088/0305-4470/31/26/007 · Zbl 0954.82017 · doi:10.1088/0305-4470/31/26/007
[33] DOI: 10.1143/JPSJ.65.3780 · Zbl 0942.82535 · doi:10.1143/JPSJ.65.3780
[34] Seneta E., Non-negative Matrices and Markov Chains (2006) · Zbl 1099.60004
[35] DOI: 10.1143/JPSJ.76.104001 · doi:10.1143/JPSJ.76.104001
[36] Landau L. D., Quantum Mechanics: Non-Relativistic Theory (1965)
[37] DOI: 10.1098/rspa.1932.0165 · Zbl 0005.18605 · doi:10.1098/rspa.1932.0165
[38] Press H. W., Numerical Recipes in C, 2. ed. (1992)
[39] DOI: 10.1103/PhysRevLett.79.325 · doi:10.1103/PhysRevLett.79.325
[40] DOI: 10.1103/PhysRevA.65.042308 · doi:10.1103/PhysRevA.65.042308
[41] DOI: 10.1088/0305-4470/39/45/004 · Zbl 1105.81017 · doi:10.1088/0305-4470/39/45/004
[42] DOI: 10.1016/S0378-4371(96)00271-3 · doi:10.1016/S0378-4371(96)00271-3
[43] DOI: 10.1103/PhysRevLett.45.566 · doi:10.1103/PhysRevLett.45.566
[44] DOI: 10.1103/PhysRevB.41.4552 · doi:10.1103/PhysRevB.41.4552
[45] DOI: 10.1103/PhysRevE.75.036703 · doi:10.1103/PhysRevE.75.036703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.