×

Simulating the dynamics of flexible bodies and vortex sheets. (English) Zbl 1158.74015

Summary: We present a numerical method for the dynamics of a flexible body in an inviscid flow with a free vortex sheet. The formulation is implicit with respect to body variables and explicit with respect to the free vortex sheet. We apply the method to a flexible foil driven periodically in a steady stream. We give numerical evidence that the method is stable and accurate for a relatively small computational cost. A continuous form of the vortex sheet regularization permits continuity of the flow across the body’s trailing edge. Nonlinear behavior arises gradually with respect to driving amplitude, and is attributed to the rolling-up of the vortex sheet. Flow quantities move across the body in traveling waves, and show large gradients at the body edges. We find that in the small-amplitude regime, the phase difference between heaving and pitching which maximizes trailing edge deflection also maximizes power output; the phase difference which minimizes trailing edge deflection maximizes efficiency.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S30 Other numerical methods in solid mechanics (MSC2010)
74S20 Finite difference methods applied to problems in solid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76B47 Vortex flows for incompressible inviscid fluids
Full Text: DOI

References:

[1] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0152.44402
[2] Krasny, R., Desingularization of periodic vortex sheet roll-up, J. Comp. Phys., 65, 292-313 (1986) · Zbl 0591.76059
[3] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[4] Zhu, L.; Peskin, C. S., Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comp. Phys., 179, 452-468 (2002) · Zbl 1130.76406
[5] Griffith, B. E.; Peskin, C. S., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comp. Phys., 208, 1, 75-105 (2005) · Zbl 1115.76386
[6] Rosenhead, L., The point vortex approximation of a vortex sheet, Proc. Roy. Soc. London Ser. A, 134, 170-192 (1932) · JFM 57.1109.04
[7] Krasny, R., Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184, 123-155 (1987)
[8] Pullin, D. I., The large-scale structure of unsteady self-similar rolled-up vortex sheets, J. Fluid Mech., 88, 03, 401-430 (1978) · Zbl 0393.76018
[9] Moore, D. W., The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. R. Soc. Lon. A, 365, 1720, 105-119 (1979) · Zbl 0404.76040
[10] Saffman, P., Vortex Dynamics (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0777.76004
[11] Krasny, R., Vortex sheet computations: roll-up, wakes, separation, Lectures Appl. Math., 28, 385-402 (1991) · Zbl 0825.76652
[12] Jones, M., The separated flow of an inviscid fluid around a moving flat plate, J. Fluid Mech., 496, 401-405 (2003) · Zbl 1072.76011
[13] Thwaites, B., Incompressible aerodynamics: an account of the theory and observation of the steady flow of incompressible fluid past aerofoils, wings, and other bodies (1987), Dover: Dover New York
[14] Shukla, R. K.; Eldredge, J. D., An inviscid model for vortex shedding from a deforming body, Theoretical Comput. Fluid Dyn., 21, 5, 343-368 (2007) · Zbl 1161.76448
[15] Alben, S.; Shelley, M. J., Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Phys. Rev. Lett., 100, 074301 (2008)
[16] Alben, S., Optimal flexibility of a flapping appendage at high Reynolds number, J. Fluid Mech., 614, 355-380 (2008) · Zbl 1162.76014
[17] Antman, S. S., Nonlinear Problems of Elasticity (1995), Springer-Verlag · Zbl 0820.73002
[18] Lighthill, M. J., Hydromechanics of aquatic animal propulsion, Annu. Rev. Fluid Mech., 1, 413-446 (1969)
[19] Didden, N., On the formation of vortex rings: rolling-up and production of circulation, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 30, 1, 101-116 (1979)
[20] Pullin, D. I.; Perry, A. E., Some flow visualization experiments on the starting vortex, J. Fluid Mech., 97, 239-255 (1980)
[21] Nitsche, M.; Krasny, R., A numerical study of vortex ring formation at the edge of a circular tube, J. Fluid Mech., 276, 139-161 (1994) · Zbl 0864.76022
[22] Pullin, D. I.; Wang, Z. J., Unsteady forces on an accelerating plate and application to hovering insect flight, J. Fluid Mech., 509, 1-21 (2004) · Zbl 1163.76329
[23] N.I. Muskhelishvili, Singular integral equations: boundary problems of function theory and their application to mathematical physics, P. Noordhoff, 1953.; N.I. Muskhelishvili, Singular integral equations: boundary problems of function theory and their application to mathematical physics, P. Noordhoff, 1953. · Zbl 0051.33203
[24] Jones, M. A.; Shelley, M. J., Falling cards, J. Fluid Mech., 540, 393-425 (2005) · Zbl 1082.76012
[25] Shelley, M.; Vandenberghe, N.; Zhang, J., Heavy flags undergo spontaneous oscillations in flowing water, Phys. Rev. Lett., 94, 094302 (2005)
[26] Lighthill, M. J., Note on the swimming of slender fish, J. Fluid Mech., 9, 2, 305-317 (1960)
[27] Wu, T. Y.T., Swimming of a waving plate, J. Fluid Mech., 10, 3, 321-344 (1961) · Zbl 0116.16801
[28] Anderson, J. M.; Streitlien, K.; Barrett, D. S.; Triantafyllou, M. S., Oscillating foils of high propulsive efficiency, J. Fluid Mech., 360, 41-72 (1998) · Zbl 0922.76023
[29] Ralston, A.; Rabinowitz, P., A First Course in Numerical Analysis (2001), Dover · Zbl 0976.65001
[30] J.A.C. Weideman, S.C. Reddy, A matlab differentiation matrix suite, ACM Transactions on Mathematical Software, 26, 465-519.; J.A.C. Weideman, S.C. Reddy, A matlab differentiation matrix suite, ACM Transactions on Mathematical Software, 26, 465-519.
[31] Mason, J. C.; Handscomb, D. C., Chebyshev Polynomials (2003), Chapman & Hall · Zbl 1015.33001
[32] Golberg, M. A., Numerical Solution of Integral Equations (1990), Plenum Press: Plenum Press New York · Zbl 0735.65092
[33] Ellington, C. P.; Vandenberg, C.; Willmott, A. P.; Thomas, A. L.R., Leading-edge vortices in insect flight, Nature, 384, 6610, 626-630 (1996)
[34] Segel, L. A., Mathematics Applied to Continuum Mechanics (1977), Macmillan Publishing Co.: Macmillan Publishing Co. New York · Zbl 0357.73001
[35] Isogai, K.; Shinmoto, Y.; Watanabe, Y., Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil, AIAA J., 37, 10, 1145-1151 (1999)
[36] Lighthill, M. J., Aquatic animal propulsion of high hydrodynamic efficiency, J. Fluid Mech., 44, 265-301 (1970) · Zbl 0228.76136
[37] Wu, T. Y., Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems, J. Fluid Mech., 46, 521-544 (1971) · Zbl 0242.76009
[38] Wang, Z. J., The role of drag in insect hovering, J. Exp. Biol., 207, 23, 4147-4155 (2004)
[39] Wu, T. Y., Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid, J. Fluid Mech., 46, 2, 337-355 (1971) · Zbl 0242.76009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.