×

Moments of first passage times in general birth-death processes. (English) Zbl 1158.60372

Summary: We consider ordinary and conditional first passage times in a general birth-death process. Under existence conditions, we derive closed-form expressions for the \(k\)th order moment of the defined random variables, \(k \geq 1\). We also give an explicit condition for a birth-death process to be ergodic degree 3. Based on the obtained results, we analyze some applications for Markovian queueing systems. In particular, we compute for some non-standard Markovian queues, the moments of the busy period duration, the busy cycle duration, and the state-dependent waiting time in queue.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI

References:

[1] Abate J, Whitt W (1988) Transient behavior of the M/M/1 queue via Laplace transforms. Adv Appl Probab 20:145–178 · Zbl 0638.60097 · doi:10.2307/1427274
[2] Abate J, Whitt W (1989) Calculating time-dependent performance measures for the M/M/1 queue. IEEE Trans Commun 37:1102–1104 · doi:10.1109/26.41165
[3] Akhiezer NI (1965) The classical moment problem and some related questions in analysis. Hafner Publishing Co., New York (Translated by N. Kemmer) · Zbl 0135.33803
[4] Ancker CJ, Gafarian A (1962) Queueing with impatient customers who leave at random. J Ind Eng 13:84–90
[5] Bailey NTJ (1954) A continuous time treatment of a single queue using generating functions. J R Stat Soc Ser 16:288–291 · Zbl 0058.34801
[6] Ball F, Stefanov VT (2001) Further approaches to computing fundamental characteristics of birth–death processes. J Appl Probab 38:995–1005 · Zbl 0995.60074 · doi:10.1239/jap/1011994187
[7] Bertsimas D, Popescu I (2005) Optimal inequalities in probability theory: a convex optimization approach. SIAM J Optim 15:780–804 · Zbl 1077.60020 · doi:10.1137/S1052623401399903
[8] Champernowne DG (1956) An elementary method of solution of the queueing problem with a single server and a constant parameter. J R Stat Soc Ser 18:125–128 · Zbl 0073.13003
[9] Coolen-Schrijner P, van Doorn EA (2002) The deviation matrix of a continuous-time Markov chain. Probabe Eng Info Sci 16:351–366 · Zbl 1011.60057
[10] Flajolet P, Guillemin F (2000) The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions. Adv Appl Probab 32:750–778 · Zbl 0966.60069 · doi:10.1239/aap/1013540243
[11] Gross D, Harris CM (1985) Fundamentals of queueing theory. 2nd edn. Wiley series in probability and mathematical statistics
[12] Guillemin F (2005) Spectral analysis of birth and death processes. Working paper, submitted to J Appl Probab
[13] Guillemin F, Pinchon D (1999) Excursions of birth and death processes, orthogonal polynomials, and continued fractions. J Appl Probab 36:752–770 · Zbl 0947.60072 · doi:10.1239/jap/1032374632
[14] Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. J R Stat Soc (Series D) Stat 47:183–189 · doi:10.1111/1467-9884.00122
[15] Jouini O, Dallery Y, Akšin OZ (2006) Modeling call centers with delay information. Working paper, Ecole Centrale Paris and Kot University
[16] Karlin S, McGregor J (1957a) The classification of birth and death processes. Trans Am Math Soc 86: 366–401 · Zbl 0091.13802 · doi:10.1090/S0002-9947-1957-0094854-8
[17] Karlin S, McGregor J (1957b) The differential equation of birth and death processes, and the setieltjes moment problem. Trans Am Math Soc 85:489–546 · Zbl 0091.13801 · doi:10.1090/S0002-9947-1957-0091566-1
[18] Keilson J (1964a) A review of transient behavior in regular diffusion and birth–death processes. Part 2. J Appl Probab 1:247–266 · Zbl 0211.48103
[19] Keilson J (1964b) A review of transient behavior in regular diffusion and birth–death processes. Part 1. J Appl Probab 1:247–266 · Zbl 0211.48103
[20] Keilson J (1979) Markov chain models–rarity and exponentiality. Springer, New York · Zbl 0411.60068
[21] Keilson J (1981) On the unimodality of passage time densities in birth–death processes. Stat Neerl 35:49–55 · Zbl 0453.60074 · doi:10.1111/j.1467-9574.1981.tb00710.x
[22] Kijima M (1997) Markov processes for stochastic modeling, 1st edn. Chapman & Hall, London · Zbl 0866.60056
[23] Kleinrock L (1975) Queueing systems, theory, vol 1. Wiley, London · Zbl 0334.60045
[24] Koole G (2004) A formula for tail probabilities of Cox distributions. J Appl Probab 41:935–938 · Zbl 1076.62011 · doi:10.1239/jap/1091543436
[25] Krinik A, Sourouri Y (1990) Taylor series solutions of classical queueing systems. Abstracts American Mathematical Society, vol 11
[26] Leguesdron P, Pellaumail J, Rubino G, Sericola B (1993) Transient analysis of the M/M/1 queue. Adv Appl Probab 25:702–713 · Zbl 0781.60092 · doi:10.2307/1427531
[27] Loève M (1977) Probability theory I, 4th edn. Springer, New York · Zbl 0359.60001
[28] Mao YH (2004) Ergodic degrees for continuous-time Markov chains. Sci China Ser A 47:161–174 · Zbl 1067.60069 · doi:10.1360/02ys0306
[29] Parthasarathy PR (1987) A transient solution to a M/M/1 queue: a new simple approach. Adv Appl Probab 19:997–998 · Zbl 0632.60098 · doi:10.2307/1427113
[30] Rosenlund SI (1977) Upwards passage times in the non-negative birth–death process. Scand J Stat 4:90–92 · Zbl 0361.60019
[31] Shohat JA, Tamarkin JD (1943) The problem of moments. American Mathematical Society Mathematical surveys, Vol 2, American Mathematical Society, New York · Zbl 0063.06973
[32] Sumita U (1984) On conditional passage time structure of birth–death processes. J Appl Probab 21:10–21 · Zbl 0535.60064 · doi:10.2307/3213660
[33] Takâcs L (1960) Introduction to the theory of queues. Oxford University Press, New York · Zbl 0106.33502
[34] Tarabia AMK (2000) Transient analysis of M/M/1/N queue–an alternative approach. Tamkang J Sci Eng 3:263–266
[35] Ward AR, Glynn PW (2003) A diffusion approximation for a Markovian queue with reneging. queueing systems: theory and applications QUESTA 43:103–128 · Zbl 1054.60100 · doi:10.1023/A:1021804515162
[36] Whitt W (1999) Predicting queueing delays. Manage Sci 45:870–888 · Zbl 1231.90143 · doi:10.1287/mnsc.45.6.870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.