×

Tensor product decompositions and open orbits in multiple flag varieties. (English) Zbl 1158.20021

Let \(G\) be a simply connected semisimple algebraic group over an algebraically closed field of characteristic zero. This paper considers some special series of tensor products of simple \(G\)-modules whose \(G\)-fixed point spaces have dimension less than or equal to one, and relates these modules to \(G\)-orbits in multiple flag varieties.
Specifically, let \(B\) be a Borel subgroup and \(T\subset B\) a maximal torus. Then the simple modules \(E_\lambda\) of \(G\) are indexed by dominant weights \(\lambda\) of \(T\) with respect to \(B\). Call a \(d\)-tuple \((\lambda_1,\dots,\lambda_d)\) of nontrivial dominant weights ‘primitive’ if for every \((n_1,\dots,n_d)\in\mathbb{Z}_{\geq 0}^d\), the \(G\)-fixed point space in \(E_{n_1\lambda_1}\otimes\cdots\otimes E_{n_d\lambda_d}\) has dimension at most one.
Given a dominant weight \(\lambda\), let \(P_\lambda\) denote the parabolic subgroup which is the stabilizer in \(G\) of the unique \(B\)-stable line in \(E_\lambda\). One of the main results of the paper says the following: If the multiple flag variety \(G/P_{\lambda_1}\times\cdots\times G/P_{\lambda_d}\) contains an open \(G\)-orbit, then \((\lambda_1,\dots,\lambda_d)\) is a primitive \(d\)-tuple. The author also gives a partial converse to this statement and discusses classification problems for primitive \(d\)-tuples and such open orbits, obtaining upper bounds on \(d\) for their existence.

MSC:

20G05 Representation theory for linear algebraic groups
14L30 Group actions on varieties or schemes (quotients)
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] Belkale, P., Geometric proof of a conjecture of Fulton, arXiv: · Zbl 1129.14063
[2] Belkale, P., Geometric proofs of Horn and saturation conjectures, arXiv: · Zbl 1090.14014
[3] Bourbaki, N., Algèbre commutative, Chapitre 5 (1964), Hermann: Hermann Paris · Zbl 0547.13002
[4] Bourbaki, N., Groupes et algèbres de Lie, Chapitres IV, V, VI (1968), Hermann: Hermann Paris · Zbl 0186.33001
[5] Derksen, H.; Weyman, J., On the canonical decomposition of quiver representations, Compos. Math., 133, 245-265 (2002) · Zbl 1016.16007
[6] Fulton, W., Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc., 37, 3, 209-249 (2000) · Zbl 0994.15021
[7] Kac, V., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56, 57-92 (1980) · Zbl 0427.17001
[8] Kac, V., Infinite root systems, representations of graphs and invariant theory II, J. Algebra, 78, 141-162 (1982) · Zbl 0497.17007
[9] Kapovich, M.; Millson, J., Structure of the tensor product semigroup, arXiv: · Zbl 1108.22010
[10] Kapovich, M.; Kumar, S.; Millson, J., Saturation and irredundancy for \(Spin(8)\), arXiv: · Zbl 1188.20045
[11] Littelmann, P., On spherical double cones, J. Algebra, 166, 1, 142-157 (1994) · Zbl 0823.20040
[12] Luna, D., Slices étales, Mem. Soc. Math. France, 33, 81-105 (1973) · Zbl 0286.14014
[13] Magyar, P.; Weyman, J.; Zelevinsky, A., Multiple flag varieties of finite type, Adv. Math., 141, 1, 97-118 (1999) · Zbl 0951.14034
[14] Magyar, P.; Weyman, J.; Zelevinsky, A., Symplectic multiple flag varieties of finite type, J. Algebra, 230, 1, 245-265 (2000) · Zbl 0996.14023
[15] Matsumura, H., Commutative Algebra (1970), Benjamin: Benjamin New York · Zbl 0211.06501
[16] Onishchik, A. L.; Vinberg, E. B., Lie Groups and Algebraic Groups (1990), Springer: Springer Berlin · Zbl 0722.22004
[17] Popov, V. L., Stability criteria for the action of a semisimple group on a factorial manifold, Math. USSR Izv., 4, 527-535 (1970) · Zbl 0261.14011
[18] Popov, V. L., Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR, Izv., 8, 301-327 (1975) · Zbl 0301.14018
[19] Popov, V. L., On the closedness of some orbits of algebraic groups, Funct. Anal. Appl., 31, 4, 286-289 (1997) · Zbl 0933.14029
[20] Popov, V. L., Generically multiple transitive algebraic group actions, (Proc. International Colloquium Algebraic Groups and Homogeneous Spaces. Proc. International Colloquium Algebraic Groups and Homogeneous Spaces, 6-14 January 2004, Tata Inst. Fund. Research, Bombay, India (2007), Narosa Publ. House), 481-523 · Zbl 1135.14038
[21] Popov, V. L.; Vinberg, E. B., On a class of quasihomogeneous affine varieties, Math. USSR, Izv., 6, 743-758 (1973) · Zbl 0255.14016
[22] Popov, V. L.; Vinberg, E. B., Invariant Theory, (Encyclopaedia Math. Sci., vol. 55 (1994), Springer: Springer Heidelberg), 123-284 · Zbl 0783.14028
[23] Rosenlicht, M., Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. (4), 43, 25-50 (1957) · Zbl 0079.25703
[24] Rosenlicht, M., A remark on quotient spaces, An. Acad. Brasil. Cienc., 35, 487-489 (1963) · Zbl 0123.13804
[25] Schofield, A., General representations of quivers, Proc. London Math. Soc., 65, 46-64 (1992) · Zbl 0795.16008
[26] Serre, J.-P., Algèbres de Lie semi-simples complexes (1966), Benjamin: Benjamin New York, Amsterdam · Zbl 0144.02105
[27] Stembridge, J. R., Multiplicity free products of Schur functions, Ann. Comb., 5, 2, 113-121 (2001) · Zbl 0990.05130
[28] Tauvel, P.; Yu, R. W.T., Lie Algebras and Algebraic Groups (2005), Springer: Springer Berlin · Zbl 1068.17001
[29] Vinberg, E. B., On stability of actions of reductive algebraic groups, (Fong; Yuen; etal., Lie Algebras, Rings and Related Topics, Papers of the 2nd Tainan-Moscow International Algebra Workshop’97, Tainan, Taiwan, January 11-17, 1997 (2000), Hong Kong: Hong Kong Springer), 188-202 · Zbl 1054.14064
[30] Zelevinsky, A., Littlewood-Richardson semigroups, (New Perspectives in Algebraic Combinatorics (1999), Math. Sci. Res. Inst. Publ.: Math. Sci. Res. Inst. Publ. Cambridge Univ. Press), 337-345, arXiv: · Zbl 0935.05094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.