×

The supercover of an \(m\)-flat is a discrete analytical object. (English) Zbl 1157.68067

Summary: The aim of this paper is to show that the supercover of an \(m\)-flat (i.e. a Euclidean affine subspace of dimension \(m\)) in Euclidean \(n\)-space is a discrete analytical object. The supercover of a Euclidean object \(F\) is a discrete object consisting of all the voxels that intersect \(F\). A discrete analytical object is a set of discrete points that is defined by a finite set of inequalities. A method to determine the inequalities defining the supercover of an \(m\)-flat is provided.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Full Text: DOI

References:

[1] Amanatides, J.; Woo, A., A Fast Voxel Traversal Algorithm for Ray Tracing, (Marechal, G., Proc. Eurographics’87. Proc. Eurographics’87, Amsterdam, Netherlands (1987), Elsevier Science B.V), 3-9
[2] E. Andres, Le plan discret, in: Proc. 3ème colloque Discrete Geometry for Computer Imagery, Strasbourg, France, 1993, pp. 45-61; E. Andres, Le plan discret, in: Proc. 3ème colloque Discrete Geometry for Computer Imagery, Strasbourg, France, 1993, pp. 45-61
[3] Andres, E.; Sibata, C.; Acharya, R., Supercover 3D Polygon, (Proc. 6th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 6th Int. Workshop on Discrete Geometry for Computer Imagery, Lyon, France. Proc. 6th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 6th Int. Workshop on Discrete Geometry for Computer Imagery, Lyon, France, Lecture Notes in Computer Science, vol. 1176 (1996), Springer: Springer Berlin, Heidelberg), 237-242 · Zbl 1541.68378
[4] Andres, E.; Acharya, R.; Sibata, C., Discrete analytical hyperplanes, Graphical Models and Image Processing, 59, 5, 302-309 (1997)
[5] Andres, E.; Nehlig, Ph.; Françon, J., Tunnel-free supercover 3D polygons and polyhedra, Proc. Eurographics ’97. Proc. Eurographics ’97, Budapest, Hungary. Proc. Eurographics ’97. Proc. Eurographics ’97, Budapest, Hungary, Computer Graphics Forum, 16, 3, C3-C13 (1997)
[6] Andres, E.; Nehlig, Ph.; Françon, J., Supercover of straight lines, planes and triangles, (Proc. 7th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 7th Int. Workshop on Discrete Geometry for Computer Imagery, Montpellier, France. Proc. 7th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 7th Int. Workshop on Discrete Geometry for Computer Imagery, Montpellier, France, Lecture Notes in Computer Science, vol. 1347 (1997), Springer: Springer Berlin, Heidelberg), 243-253
[7] Andres, E.; Jacob, M-A., The Discrete Analytical Hyperspheres, IEEE Transactions on Visualization and Computer Graphics, 3, 1, 75-86 (1997)
[8] Andres, E., Defining discrete objects for polygonalization: The standard model, (Proc. 10th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 10th Int. Workshop on Discrete Geometry for Computer Imagery, Bordeaux, France. Proc. 10th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 10th Int. Workshop on Discrete Geometry for Computer Imagery, Bordeaux, France, Lecture Notes in Computer Science, vol. 2301 (2002), Springer: Springer Berlin, Heidelberg), 315-322
[9] Andres, E., Discrete analytical objects: The standard model, Graphical Models, 65, 1-3, 92-111 (2003) · Zbl 1039.68139
[10] Bresenham, J. E., Algorithm for computer control of a digital plotter, IBM Systems Journal, 1, 4, 25-30 (1965)
[11] Bresenham, J. E., Ambiguities in incremental line rastering, IEEE Computer Graphics & Applications, 31-43 (1987)
[12] Chassery, J.-M., Discrete convexity: Definition, parametrization and compatibility with continuous convexity, Computer Vision, Graphics and Image Processing, 21, 326-344 (1983) · Zbl 0535.52010
[13] Cohen-Or, D.; Kaufman, A., Fundamentals of surface voxelization, Graphical Models and Image Processing, 57, 6 (1995)
[14] Cohen-Or, D.; Kaufman, A., 3D line voxelization and connectivity control, IEEE Computer Graphics and Applications, 80-87 (1997)
[15] Debled-Renesson, I.; Reveillès, J.-P., A new approach to digital planes, (Boston, USA. Boston, USA, Proc. SPIE Vision Geometry III, vol. 2356 (1994), SPIE: SPIE Bellingham)
[16] Eggleston, H. G., Convexity (1966), Cambridge University Press · Zbl 0086.15302
[17] O. Figueiredo, J.-P. Reveillès, A contribution to 3D digital lines, in: Proc. 5th Int. Workshop on Discrete Geometry for Computer Imagery, Clermont-Ferrand, France, Université Clermont I, Sep. 1995, pp. 187-198; O. Figueiredo, J.-P. Reveillès, A contribution to 3D digital lines, in: Proc. 5th Int. Workshop on Discrete Geometry for Computer Imagery, Clermont-Ferrand, France, Université Clermont I, Sep. 1995, pp. 187-198
[18] Forchhammer, S., Digital plane and grid point segments, Computer Vision Graphics Image Process, 47, 373-389 (1989)
[19] Françon, J., Discrete combinatorial surfaces, Graphical Models and Image Processing, 57 (1995)
[20] Françon, J., Sur la topologie d’un plan arithmétique, Theoretical Computer Science, 156, 159-176 (1996), (in French) · Zbl 0871.68165
[21] Fujimoto, A.; Takayu, T.; Iwata, K., ARTS: Accelerated ray-tracing system, IEEE Computer Graphics and Applications, 6, 4, 16-26 (1986)
[22] A. Kaufman, An algorithm for 3D scan conversion of polygons, in: Proc. of Eurographics’87, Amsterdam, 1987; A. Kaufman, An algorithm for 3D scan conversion of polygons, in: Proc. of Eurographics’87, Amsterdam, 1987
[23] Kim, C. E., Three-dimensional digital line segments, IEEE Transactions on Pattern Analysis and Machine Intellegence, 5, 2, 231-234 (1983) · Zbl 0513.68075
[24] Kim, C. E., Three-dimensional digital planes, IEEE Transactions on Pattern Analysis and Machine Intellegence, 6, 5, 639-645 (1984) · Zbl 0555.68063
[25] J.-P. Reveillès, Géométrie Discrète, calculs en nombres entiers et algorithmique, State Thesis, Département d’Informatique, Université Louis Pasteur, Strasbourg, France, 1991 (in French); J.-P. Reveillès, Géométrie Discrète, calculs en nombres entiers et algorithmique, State Thesis, Département d’Informatique, Université Louis Pasteur, Strasbourg, France, 1991 (in French)
[26] Stojmenovic, I.; Tosic, R., Digitization schemes and the recognition of digital straight lines, hyperplanes and flats in arbitrary dimensions, (Contemporary Math Series. Contemporary Math Series, Vision Geometry, vol. 119 (1991), American Mathematical Society: American Mathematical Society Providence, USA), 197-212 · Zbl 0732.68104
[27] Tajine, M.; Wagner, D.; Ronse, C., Hausdorff discretization and its comparison to other discretization schemes, (Proc. 8th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 8th Int. Workshop on Discrete Geometry for Computer Imagery, Marne-la-Vallée, France. Proc. 8th Int. Workshop on Discrete Geometry for Computer Imagery. Proc. 8th Int. Workshop on Discrete Geometry for Computer Imagery, Marne-la-Vallée, France, Lecture Notes in Computer Science, vol. 1568 (1999)), 399-410
[28] Veerlaert, P., On the flatness of digital hyperplanes, Journal of Mathematical Imaging Vision, 3, 205-221 (1993) · Zbl 0798.52005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.