×

Exact values and sharp estimates for the total variation distance between binomial and Poisson distributions. (English) Zbl 1157.62005

Summary: We present a method to obtain both exact values and sharp estimates for the total variation distance between binomial and Poisson distributions with the same mean \(\lambda \). We give a simple efficient algorithm, whose complexity order is \(\sqrt\lambda\), to compute exact values. Such an algorithm can be further simplified for moderate sample sizes \(n\), provided that \(\lambda \) is neither close to \(l + \sqrt l, l = 1, 2, \dots \), from the left nor close to \(m -\sqrt m, m = 2, 3, \dots \), from the right. Sharp estimates, better than other known estimates in the literature, are also provided. The 0s of the second Krawtchouk and Charlier polynomials play a fundamental role.

MSC:

62E17 Approximations to statistical distributions (nonasymptotic)
65C60 Computational problems in statistics (MSC2010)
60E15 Inequalities; stochastic orderings
Full Text: DOI

References:

[1] Adell, J. A. (2008). A differential calculus for linear operators represented by stochastic processes. Preprint. Available at http://www.unizar.es/galdeano/preprints/lista.html.
[2] Adell, J. A. and Anoz, J. M. (2008). Signed binomial approximation of binomial mixtures via differential calculus for linear operators. J. Statist. Planning Infer. 138, 3687–3698. · Zbl 1169.62006 · doi:10.1016/j.jspi.2007.11.018
[3] Adell, J. A. and Lekuona, A. (2000). Taylor’s formula and preservation of generalized convexity for positive linear operators. J. Appl. Prob. 37, 765–777. · Zbl 0966.60014 · doi:10.1239/jap/1014842835
[4] Adell, J. A. and Lekuona, A. (2005). Sharp estimates in signed Poisson approximation of Poisson mixtures. Bernoulli 11, 47–65. · Zbl 1062.60034 · doi:10.3150/bj/1110228242
[5] Adell, J. A. and Pérez-Palomares, A. (1999). Stochastic orders in preservation properties by Bernstein-type operators. Adv. Appl. Prob. 31, 492–509. · Zbl 0937.60008 · doi:10.1239/aap/1029955144
[6] Barbour, A. D. and Hall, P. (1984). On the rate of Poisson convergence. Math. Proc. Camb. Phil. Soc. 95, 473–480. · Zbl 0544.60029 · doi:10.1017/S0305004100061806
[7] Barbour, A. D. and Xia, A. (2000). Estimating Stein’s constants for compound Poisson approximation. Bernoulli 6, 581–590. · Zbl 0959.62014 · doi:10.2307/3318506
[8] Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation (Oxford Stud. Prob. 2 ). Clarendon Press, Oxford. · Zbl 0746.60002
[9] Borisov, I. S. and Ruzankin, P. S. (2002). Poisson approximation for expectations of unbounded functions of independent random variables. Ann. Prob. 30, 1657–1680. · Zbl 1015.60018 · doi:10.1214/aop/1039548369
[10] Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Prob. 3, 534–545. JSTOR: · Zbl 0335.60016 · doi:10.1214/aop/1176996359
[11] Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials . Gordon and Breach, New York. · Zbl 0389.33008
[12] Deheuvels, P. and Pfeifer, D. (1986). A semigroup approach to Poisson approximation. Ann. Prob. 14, 663–676. · Zbl 0597.60019 · doi:10.1214/aop/1176992536
[13] Deheuvels, P., Pfeifer, D. and Puri, M. L. (1989). A new semigroup technique in Poisson approximation. Semigroup Forum 38, 189–201. · Zbl 0674.60026 · doi:10.1007/BF02573230
[14] Kennedy, J. E. and Quine, M. P. (1989). The total variation distance between the binomial and Poisson distributions. Ann. Prob. 17, 396–400. · Zbl 0664.60027 · doi:10.1214/aop/1176991519
[15] Kerstan, J. (1964). Verallgemeinerung eines Satzes von Prochorow und Le Cam. Z. Wahrscheinlichkeitsth. 2, 173–179. · Zbl 0123.35403 · doi:10.1007/BF00533378
[16] Le Cam, L. (1960). An approximation theorem for the Poisson binomial distribution. Pacific J. Math. 10, 1181–1197. · Zbl 0118.33601 · doi:10.2140/pjm.1960.10.1181
[17] Prohorov, Y. V. (1953). Asymptotic behavior of the binomial distribution. Uspehi Matem. Nauk 8, 135–142.
[18] Roos, B. (1999). Asymptotic and sharp bounds in the Poisson approximation to the Poisson-binomial distribution. Bernoulli 5, 1021–1034. · Zbl 0951.60040 · doi:10.2307/3318558
[19] Roos, B. (2001). Sharp constants in the Poisson approximation. Statist. Prob. Lett. 52, 155–168. · Zbl 0991.60014 · doi:10.1016/S0167-7152(00)00208-X
[20] Schoutens, W. (2000). Stochastic Processes and Orthogonal Polynomials (Lecture Notes Statist. 146 ). Springer, New York.
[21] Weinberg, G. V. (2000). Stein factor bounds for random variables. J. Appl. Prob. 37, 1181–1187. · Zbl 0985.60018 · doi:10.1239/jap/1014843100
[22] Xia, A. (1999). A probabilistic proof of Stein’s factors. J. Appl. Prob. 36, 287–290. · Zbl 0942.60006 · doi:10.1239/jap/1032374250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.