×

Frame self-orthogonal Mendelsohn triple systems of type \(h^n\). (English) Zbl 1157.05012

Summary: A Mendelsohn triple system (MTS) corresponds to an idempotent semisymmetric Latin square (quasigroup) of the same order. A holey MTS is called frame self-orthogonal, briefly FSOMTS, if its associated holey semisymmetric Latin square is frame self-orthogonal. In this paper, we use FSOMTS\((h^n)\) to denote an FSOMTS with \(n\) spanning holes of size \(h\). The existence of FSOMTS\((h^n)\) for \(h\leqslant 3\) has been known with a few exceptions. We extend the existing results and determine the necessary and sufficient conditions for the existence of FSOMTS\((h^n)\) for any \(h\) and \(n\) with some possible exceptions.

MSC:

05B07 Triple systems
05B15 Orthogonal arrays, Latin squares, Room squares
Full Text: DOI

References:

[1] Assaf, A.; Wei, R., Modified group divisible designs with block size 4 and \(\lambda = 1\), Discrete Math., 195, 15-25 (1999) · Zbl 0930.05011
[2] Bennett, F. E.; Zhang, H.; Zhu, L., Self-orthogonal Mendelsohn triple systems, J. Combin. Theory Ser. A, 73, 207-218 (1996) · Zbl 0842.05008
[3] Bennett, F. E.; Zhu, L., Conjugate-orthogonal Latin squares and related structures, (Dinitz, J.; Stinson, D., Contemporary Design Theory: A Collection of Surveys (1992), Wiley: Wiley New York), 41-96 · Zbl 0765.05022
[4] Brouwer, A. E.; Schrijver, A.; Hanani, H., Group divisible designs with block size four, Discrete Math., 20, 1-10 (1977) · Zbl 0371.62105
[5] C.J. Colbourn, J.H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, second ed., CRC Press, Boca Raton, 2006.; C.J. Colbourn, J.H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, second ed., CRC Press, Boca Raton, 2006.
[6] Denes, J.; Keedwell, A. D., Latin Squares and Their Applications (1974), Academic Press: Academic Press New York, London · Zbl 0283.05014
[7] Ge, G.; Ling, A. C.H., Group divisible designs with block size four and group type \(g^u m^1\) with small \(g\), Discrete Math., 285, 97-120 (2004) · Zbl 1044.05017
[8] Ge, G.; Wang, J.; Wei, R., MGDD with block size 4 and its application to sampling designs, Discrete Math., 272, 277-283 (2003) · Zbl 1028.05012
[9] Hedayat, A.; Seiden, E., On the theory and application of sum composition of Latin squares, Pacific J. Math., 54, 85-113 (1974) · Zbl 0315.05011
[10] Heinrich, K.; Zhu, L., Incomplete self-orthogonal Latin squares, J. Austral. Math. Soc. Ser. A, 42, 365-384 (1987) · Zbl 0616.05016
[11] Horton, J. D., Sub-Latin squares and incomplete orthogonal arrays, J. Combin. Theory Ser. A, 16, 23-33 (1974) · Zbl 0297.05015
[12] Kreher, D. L.; Stinson, D. R., Small group divisible designs with block size four, J. Statist. Plann. Inference, 58, 111-118 (1997) · Zbl 0879.05017
[13] Lindner, C. C.; Steedly, D., On the number of conjugates of a quasigroup, Algebra Universalis, 5, 191-196 (1975) · Zbl 0324.20078
[14] Ling, A. C.H.; Colbourn, C. J., Modified group divisible designs with block size four, Discrete Math., 219, 207-221 (2000) · Zbl 0957.05013
[15] Mendelsohn, N. S., A natural generalization of Steiner triple systems, (Atkin, A. O.L.; Birch, B. J., Computers in Number Theory (1971), Academic Press: Academic Press New York), 323-338 · Zbl 0216.30102
[16] Mullin, R. C.; Ling, A. C.H.; Abel, R. J.R.; Bennett, F. E., On the closure of subsets of \(\{4, 5, \ldots, 9 \}\) which contain {4}, Ars Combin., 45, 33-76 (1997) · Zbl 0933.05008
[17] NacNeish, H. E., Euler squares, Ann. Math., 23, 221-227 (1922) · JFM 49.0041.05
[18] Stein, S. K., On the foundations of quasigroups, Trans. Amer. Math. Soc., 85, 228-256 (1957) · Zbl 0079.02402
[19] Wang, J., Incomplete group divisible designs wit block size four, J. Combin. Designs, 11, 442-455 (2003) · Zbl 1031.05026
[20] Xu, Y.; Lu, Q., Existence of frame SOLS of type \(3^n u^1\), J. Combin. Math. Combin. Comput., 24, 129-146 (1997) · Zbl 0889.05028
[21] Xu, Y.; Zhang, H., Frame self-orthogonal Mendelsohn triple systems, Acta Math. Sinica English Ser., 20, 5, 913-924 (2004) · Zbl 1065.05021
[22] Zhu, L., A short disproof of Euler’s conjecture concerning orthogonal Latin squares (with editorial comment by A.D. Keedwell), Ars Combin., 14, 47-55 (1982) · Zbl 0507.05012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.