×

Optimal shape and position of the support for the internal exact control of a string. (English) Zbl 1155.49312

Summary: We consider the problem of optimizing the shape and position of the support \(\omega \) of the internal exact control of minimal \(L^{2}(0,T;L^{2}(\omega ))\)-norm for the 1-D wave equation. A relaxation for this problem is found and the minimizers of the relaxed problem are characterized through first-order optimality conditions.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
93B05 Controllability
70Q05 Control of mechanical systems
74K05 Strings
Full Text: DOI

References:

[1] Bednarczuk, E.; Pierre, M.; Rouy, E.; Sokolowski, J., Tangent sets in some functional spaces, J. Math. Anal. Appl., 42, 871-886 (2000) · Zbl 0995.90097
[2] Delfour, M. C.; Zolésio, J. P., Shapes and Geometries—Analysis, (Differential Calculus and Optimization. Differential Calculus and Optimization, Advances in Design and Control (2001), SIAM) · Zbl 0675.49010
[3] Haraux, A., On a completion problem in the theory of distributed control of wave equations, (Br èzis, H.; Lions, J. L., Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar. Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Pitman Research Notes in Mathematics (1988)) · Zbl 0731.93056
[4] Haraux, A., A generalized internal control for the wave equation in a rectangle, J. Math. Anal. Appl., 153, 190-216 (1990) · Zbl 0719.49008
[5] Hebrard, P.; Henrot, A., Optimal shape and position of the actuators for the stabilization of a string, Syst. Control Lett., 48, 199-209 (2003) · Zbl 1134.93399
[6] Henrot, A.; Maillot, H., Optimization of the shape and location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8, 4, 737-757 (2001) · Zbl 1177.49061
[7] Henrot, A.; Pierre, M., (Variation and optimisation des formes: Une analyse géometrique. Variation and optimisation des formes: Une analyse géometrique, Mathématiques et Applications, 48 (2005), Springer) · Zbl 1098.49001
[8] Lagnese, J., Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21, 1, 68-85 (1983) · Zbl 0512.93014
[9] Lions, J. L., Contrôlabilité exacte, perturbation et stabilisation des systèmes distribués (1988), Masson: Masson Tome 1 · Zbl 0653.93002
[10] Münch, A., Optimal location of the support of the control for the 1-D wave equation: Numerical investigations, Comput. Optim. Appl., 39, 3, 262-286 (2008)
[11] Münch, A., Optimal design of the support of the control for the 2-D wave equation : Numerical investigations, Int. J. Numer. Anal. Model., 5, 2, 331-351 (2008) · Zbl 1242.49091
[12] Münch, A.; Pedregal, P.; Periago, F., Optimal design of the damping set for the stabilization of the wave equation, J. Differential Equations, 231, 1, 331-358 (2006) · Zbl 1105.49005
[13] A. Münch, P. Pedregal, F. Periago, Optimal internal stabilization of the linear system of elasticity, Arch. Rat. Mech. Anal. (in press); A. Münch, P. Pedregal, F. Periago, Optimal internal stabilization of the linear system of elasticity, Arch. Rat. Mech. Anal. (in press) · Zbl 1169.74008
[14] Münch, A.; Pedregal, P.; Periago, F., Relaxation of an optimal design problem for the heat equation, J. Math. Pures Appl., 89, 3, 225-247 (2008) · Zbl 1147.35015
[15] Zuazua, E., Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitrairement petit, C. R. Acad. Sci. Paris Sr. I Math., 304, 7, 173-176 (1987) · Zbl 0611.49028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.