×

Asymptotics for a variational problem with critical growth and slightly positive Dirichlet data. (English) Zbl 1155.35015

Let \(\Omega\subset{\mathbb R}^N\) (\(N>2\)) be a bounded domain with smooth boundary. Denote \(p=(N+2)/(N-2)\) and let \(\varepsilon>0\).
This paper deals with the study of the variational problem
\[ S_{\gamma,\varepsilon}=\inf_{u\in {\mathcal A}_{\gamma,\varepsilon}}\int_ \Omega | \nabla u| ^2, \]
where
\[ {\mathcal A}_{\gamma,\varepsilon}= \left\{u\in H^1(\Omega);\;u-\varepsilon\in H^1_0(\Omega),\;\gamma=\int_\Omega | u| ^{p+1}>| \Omega | \varepsilon^{p+1}\right\}. \]
The main result of this paper establishes that the solution concentrates at exactly one interior point as \(\varepsilon\) tends to zero. The proof combines variational arguments with a Pohozaev-type identity.

MSC:

35J20 Variational methods for second-order elliptic equations
49J35 Existence of solutions for minimax problems
35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] Atkinson, F.; Peletier, L. A., Elliptic equations with nearly critical growth, J. Differential Equations, 70, 349-365 (1987) · Zbl 0657.35058
[2] Bahri, A., Critical point at infinity in some variational problems, (Pitman Research Notes in Mathematics Series, vol. 182 (1989), Longman) · Zbl 0676.58021
[3] Bahri, A.; Coron, J. M., On a nonlinear elliptic equation involving Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math., 41, 253-290 (1987)
[4] Brezis, H.; Peletier, L. A., Asymptotics for Elliptic Equations Involving the Critical Growth, Partial Differential Equations and Calculus of Variations, vol. 1 (1989), Birkhäuser: Birkhäuser Boston, pp. 149-192 · Zbl 0685.35013
[5] Caffarelli, L. A.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical growth, Comm. Pure Appl. Math., 42, 271-297 (1989) · Zbl 0702.35085
[6] Caffarelli, L. A.; Spruck, J., Variational problems with critical Sobolev growth and positive Dirichlet data, Indiana Univ. Math. J., 39, 1-18 (1990) · Zbl 0717.35028
[7] Dancer, E. N., A note on an equation with critical exponent, Bull. London Math. Soc., 20, 600-602 (1988) · Zbl 0646.35027
[8] Ding, W., Positive solutions of \(\Delta u + u^{\frac{N + 2}{N - 2}} = 0\) on contractible domains, J. Partial Differential Equations, 2, 4, 83-88 (1989) · Zbl 0694.35067
[9] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related proprieties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[10] Coron, J. M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, 299, Series I, 209-212 (1984) · Zbl 0569.35032
[11] del Pino, M.; Felmer, P.; Musso, M., Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Part. Diff. Eq., 16, 2, 113-145 (2003) · Zbl 1142.35421
[12] del Pino, M.; Felmer, P.; Musso, M., Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations, 182, 2, 511-540 (2002) · Zbl 1014.35028
[13] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (1983), Springer: Springer New York · Zbl 0562.35001
[14] Han, Z. C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, 8, 159-174 (1991) · Zbl 0729.35014
[15] Passaseo, D., Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., 65, 2, 147-165 (1989) · Zbl 0701.35068
[16] Pistoia, A.; Rey, O., Boundary blow-up for a Brezis-Peletier problem on a singular domain, Calc. Var. Part. Diff. Eq., 18, 243-251 (2003) · Zbl 1066.35036
[17] Pohozaev, S. I., Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), Soviet Math. Dok., 6, 1408-1411 (1965) · Zbl 0141.30202
[18] Rey, O., The role of Green’s function in non-linear elliptic equation involving critical Sobolev exponent, J. Funct. Anal., 89, 1-52 (1990) · Zbl 0786.35059
[19] Rey, O., Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math., 65, 19-37 (1989) · Zbl 0708.35032
[20] Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 511-517 (1984) · Zbl 0535.35025
[21] Wei, J., Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent, J. Math. Soc. Japan, 50, 139-153 (1998) · Zbl 0906.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.