×

Shape-invariance approach and Hamiltonian hierarchy method on the Woods-Saxon potential for \(\ell \neq 0\) states. (English) Zbl 1154.81377

Summary: An analytically solvable Woods-Saxon potential for \(\ell \neq 0\) states is presented within the framework of supersymmetric quantum mechanics formalism. The shape-invariance approach and Hamiltonian hierarchy method are included in calculations by means of a translation of parameters. The approximate energy spectrum of this potential is obtained for \(\ell \neq 0\) states, applying the Woods-Saxon square approximation to the centrifugal barrier term of the Schrödinger equation.

MSC:

81V55 Molecular physics
81Q60 Supersymmetry and quantum mechanics
81U15 Exactly and quasi-solvable systems arising in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Full Text: DOI

References:

[1] Villaveces J.L.C., Arteca C.G.A., Fernández F.M., Castro E.A. (1988) J. Math. Chem. 2(3):217 · doi:10.1007/BF01167202
[2] Estrin D.A., Fernández F.M., Castro E.A. (1990) J. Math. Chem. 5(2):177 · doi:10.1007/BF01166427
[3] Frank A., Lemus R., Pérez-Bernal F. (1999) J. Math. Chem. 25(4):383 · Zbl 0969.81068 · doi:10.1023/A:1019113323386
[4] Yang B., Han K., Ding S. (2000) J. Math. Chem. 28(1–3):247 · Zbl 1027.81538 · doi:10.1023/A:1018878124232
[5] Berkdemir C., Berkdemir A., Sever R. (2005) Phys. Rev. C 72:027001 · doi:10.1103/PhysRevC.72.027001
[6] Berkdemir C., Han J. (2005) Chem. Phys. Lett. 409:203 · doi:10.1016/j.cplett.2005.05.021
[7] A.D. Alhaidari, Int. J. Theor. Phys. 42, 2999 (2003); B. Roy, P. Roy, Phys. Lett. A 340, 70 (2005); B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, Mod. Phys. Lett. A 19, 2765 (2004)
[8] Berkdemir C., Berkdemir A., Han J. (2006) Chem. Phys. Lett. 417:326 · doi:10.1016/j.cplett.2005.10.039
[9] Berkdemir C. (2007) Am. J. Phys. 75(1):81 · Zbl 1219.81095 · doi:10.1119/1.2360992
[10] Cooper F., Khare A., Sukhatme U.P. (1995) Phys. Rep. 251:267 · doi:10.1016/0370-1573(94)00080-M
[11] Gedenshtein L., Krive I.V. (1985) So. Phys. Usp. 28:645 · doi:10.1070/PU1985v028n08ABEH003882
[12] Barclay D.T., Dutt R., Gangopadhyaya A., Khare A., Pagnamenta A., Sukhatme U. (1993) Phys. Rev. A 48:2786 · doi:10.1103/PhysRevA.48.2786
[13] Lévai G. (1993) Lect. Notes in Phys. 427:427
[14] Gozzi E., Reuter M., Thacker W.D. (1993) Phys. Lett. A 183:29 · doi:10.1016/0375-9601(93)90883-2
[15] Filho E.D., Ricotta R.M. (1995) Mod. Phys. Lett. A 10:1613 · doi:10.1142/S0217732395001733
[16] Dunne G., Feinberg J. (1998) Phys. Rev. D 57:1271 · doi:10.1103/PhysRevD.57.1271
[17] Khare A., Sukhatme U. (1999) J. Math. Phys. 40:5473 · Zbl 0968.81019 · doi:10.1063/1.533040
[18] Chun-Sheng J., Ying Z., Xiang-Lin Z., Liang-Tian S. (2001) Commun. Theor. Phys. (Beijin, China) 36:641
[19] Aktaş M., Sever R. (2004) Mod. Phys. Lett. A 19:2871 · Zbl 1061.81030 · doi:10.1142/S0217732304015993
[20] Mohammed-Azizi B., Medjadi D.E. (2004) Comput. Phys. Commun. 156:241 · doi:10.1016/S0010-4655(03)00464-8
[21] P.M. Morse, Phys. Rev. 34, 57 (1929); A. Kratzer, Z. Phys. 3, 289 (1920); L.D. Nielsen, Am. J. Phys. 46(9), 889 (1978)
[22] C.S. Jia, X.G. Wang, X.K. Yao, P.C. Chen, W. Xiao, J. Phys. A: Math. Gen. 31, 4763 (1998); C.S. Jia, J.Y. Wang, S. He, L.T. Sun, J. Phys. A: Math. Gen. 33, 6993 (2000)
[23] Lu J. (2005) Pyhsica Scripta. 72:349 · Zbl 1082.81535 · doi:10.1238/Physica.Regular.072a00349
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.