×

Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). (English) Zbl 1154.80355

Summary: Research on thermal nanofluids has progressed rapidly since their enhanced thermal conductivities were identified about a decade ago. Thermal nanofluids have been observed to increase the critical heat flux (CHF) remarkably under pool-boiling conditions, which could not be explained by conventional theories developed for pure fluids. This paper proposes an alternative mechanism, the long-range structural disjoining pressure arising from the confinement of nanoparticles in a meniscus, and investigates its role under high heat flux conditions. The structural disjoining pressure is incorporated into a four-zoned dry patch model and an analytical model is established to calculate the equilibrium meniscus shape in the presence of nanoparticles. The results show that the structural disjoining pressure can significantly increase the wettability of the fluids and inhibit the dry patch development. Other possible mechanisms on the enhanced CHF are discussed and future studies to resolve remaining issues are recommended.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Bang, I. C.; Chang, S. H.: Boiling heat transfer performance and phenomena of al2o3 – water nanofluids from a plain surface in a pool, Int. J. Heat mass transfer 48, 2407-2419 (2005)
[2] Bang, I. C.; Chang, S. H.; Baek, W. P.: Direct observation of a liquid film under a vapor environment in a pool boiling using a nanofluid, Appl. phys. Lett. 86, 134107 (2005)
[3] Chengara, A.; Nikolov, A. D.; Wasan, D. T.: Spreading of nanofluids driven by the structural disjoining pressure gradient, J. colloid interf. Sci. 280, 192-201 (2004)
[4] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 1995.
[5] Das, S. K.; Putra, N.; Roetzel, W.: Pool-boiling characteristics of nanofluids, Int. J. Heat mass transfer 46, 851-862 (2003) · Zbl 1136.76489
[6] Dhir, V. K.; Liaw, S. P.: Framework for a unified model for nucleate and transition pool-boiling, ASME J. Heat transfer 111, 739-746 (1989)
[7] Haramura, Y.; Katto, Y.: A new hydraulic model for critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids, Int. J. Heat mass transfer 26, 389-399 (1983) · Zbl 0571.76111 · doi:10.1016/0017-9310(83)90043-1
[8] Hetsroni, G.; Gurevich, M.; Mosyak, A.; Rozenblit, R.; Segal, Z.: Boiling enhancement with environmentally acceptable surfactants, Int. J. Heat fluid flow 25, 841-848 (2004) · Zbl 1136.76529
[9] Israelachvili, J. N.: Intermolecular and surface, forces, (1992)
[10] Kim, H.; Kim, J.; Kim, M. H.: Effect of nanoparticles on CHF enhancement in pool-boiling of nanofluids, Int. J. Heat mass transfer 49, 5070-5074 (2006)
[11] Kutateladze, S. S.: Boiling heat transfer, Int. J. Heat mass transfer 4, 31-45 (1961)
[12] Lienhard, L. H.; Dhir, V. K.: Hydrodynamic predictions of peak pool-boiling heat flux from finite bodies, ASME J. Heat transfer 95, 152-158 (1973)
[13] Maracy, M.; Winterton, R. H. S.: Hysteresis and contact angle effects in transition pool-boiling of water, Int. J. Heat mass transfer 31, 1443-1449 (1988)
[14] Milanova, D.; Kumar, R.: Role of ions in pool-boiling heat transfer of pure and silica nanofluids, Appl. phys. Lett. 87, 233107 (2005)
[15] Sefiane, K.: On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids, Appl. phys. Lett. 89, 044106 (2006)
[16] Sethumadhavan, G.; Nikolov, A.; Wasan, D. T.: Stability of liquid films containing monodisperse colloidal particles, J. colloid interf. Sci. 240, 105-112 (2001)
[17] Trokhymchuk, A.; Henderson, D.; Nikolov, A.; Wasan, D. T.: A simple calculation of structural and depletion forces for fluids/suspensions confined in a film, Langmuir 17, 4940-4947 (2001)
[18] Vafaei, S.; Borca-Tascius, T.; Podowski, M. Z.; Purkayastha, A.; Ramanath, G.; Ajayan, P. M.: Effect of nanoparticles on sessile droplet contact angle, Nanotechnology 17, 2523-2527 (2006)
[19] Vassallo, P.; Kumar, R.; Damico, S.: Pool-boiling heat transfer experiments in silica – water nanofluids, Int. J. Heat mass transfer 47, 407-411 (2004)
[20] Wasan, D. T.; Nikolov, A. D.: Spreading of nanofluids on solids, Nature 423, 156-159 (2003)
[21] Wasekar, V. M.; Manglik, R. M.: Pool-boiling heat transfer in aqueous solutions of an anionic surfactant, ASME J. Heat transfer 122, 708-715 (2000)
[22] Wayner, P. C.: Intermolecular forces in change of phase heat transfer: 1998 donald Q. Kern award review, Aiche J. 45, 2055-2068 (1999)
[23] Wen, D. S.; Ding, Y. L.; Williams, R.: Thermal nanofluids for heat intensification applications, Chem. eng. 771, 32-34 (2005)
[24] Wen, D. S.; Ding, Y. L.: Experimental investigation into the pool-boiling heat transfer of aqueous based – al2o3 nanofluids, J. nanoparticle res. 7, 265-274 (2005)
[25] Wen, D. S.; Ding, Y. L.; Williams, R.: Pool-boiling heat transfer of aqueous based tio2 nanofluids, J. enhanced heat transfer 13, 231-244 (2006)
[26] Wen, D. S.; Wang, B. X.: Effects of surface wettability on nucleate pool-boiling heat transfer for surfactant solutions, Int. J. Heat mass transfer 45, 1739-1747 (2002)
[27] You, S. M.; Kim, J. H.; Kim, K. H.: Effect of nanoparticles on critical heat flux of water in pool-boiling heat transfer, Appl. phys. Lett. 83, 3374-3376 (2003)
[28] Haa, S. J.; No, H. C.: A dry-spot model of critical heat flux applicable to both pool-boiling and sub-cooled forced convection boiling, Int. J. Heat mass transfer 43, 241-250 (2000) · Zbl 0945.76577 · doi:10.1016/S0017-9310(99)00135-0
[29] Theofanous, T. G.; Dinh, T. N.; Tu, J. P.; Dinh, A. T.: The boiling crisis phenomenon part II: Dryout dynamics and burnout, Exp. therm. Fluid sci. 26, 793-810 (2002)
[30] Zhao, Y. H.; Masuoka, T.; Tsuruta, T.: Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model, Int. J. Heat mass transfer 45, 3189-3197 (2002) · Zbl 1072.76679 · doi:10.1016/S0017-9310(02)00022-4
[31] Zuber, N.: On stability of boiling heat transfer, ASME J. Heat transfer 80, 711-720 (1958)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.