×

Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality. (English) Zbl 1154.80309

Summary: Flow boiling of refrigerant HFC-134a in a multi-microchannel copper cold plate evaporator is investigated. The heat transfer coefficient is measured locally for the entire range of vapor qualities starting from subcooled liquid to superheated vapor. The test piece contains 17 parallel, rectangular microchannels (0.762 mm wide) of hydraulic diameter 1.09 mm and aspect ratio 2.5. The design of the test facility is validated by a robust energy balance as well as a comparison of single-phase heat transfer coefficients with results from the literature. Results are presented for four different mass fluxes of 20.3, 40.5, 60.8, and 81.0 kg m\(^{ - 2}\) s\(^{ - 1}\), which correspond to refrigerant mass flow rates of 0.5-2.0 g s\(^{ - 1}\), and at three different pressures 400, 550 and 750 kPa corresponding to saturation temperatures of 8.9, 18.7, and 29 \(^\circ C\). The wall heat flux varies from 0 to 20 W/cm\(^{2}\) in the experiments. The heat transfer coefficient is found to vary significantly with refrigerant inlet quality and mass flow rate, but only slightly with saturation pressure for the range of values investigated. The peak heat transfer coefficient is observed for a vapor quality of approximately 20%.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)

References:

[1] Garimella, S. V.; Sobhan, C. B.: Transport in microchannels – a critical review, Ann. rev. Heat transfer 13, 1-50 (2003)
[2] Thome, J. R.: Boiling in microchannels: a review of experiment and theory, Int. J. Heat fluid flow 25, 128-139 (2004)
[3] Garimella, S. V.; Singhal, V.; Liu, D.: On-chip thermal management with microchannel heat sinks and integrated micropumps, Proc. IEEE 94, 1534-1548 (2006)
[4] A. Bar-Cohen, E. Rahim, Modeling and prediction of two-phase refrigerant flow regimes and heat transfer characteristics in microgap channels, in: Proceedings of the 5th International Conference on Nanochannels, Microchannels, and Minichannels ICNMM2007, 2007.
[5] Hetsroni, G.; Klein, D.; Mosyak, A.; Segal, Z.; Pogrebnyak, E.: Convective boiling in parallel microchannels, Microscale thermophys. Eng. 8, 403-421 (2004)
[6] Liu, D.; Lee, P.; Garimella, S. V.: Prediction of the onset of nucleate boiling in microchannel flow, Int. J. Heat mass transfer 48, 4149-5134 (2005) · Zbl 1188.76261 · doi:10.1016/j.ijheatmasstransfer.2005.07.021
[7] Qu, W.; Mudawar, I.: Transport phenomena in two-phase micro-channel heat sinks, J. electron. Pack. 126, 213-224 (2004)
[8] P.S. Lee, S.V. Garimella, Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays, Int. J. Heat Mass Transfer, Available online 28 June 2007. · Zbl 1133.80300
[9] Steinke, M. E.; Kandlikar, S. G.: An experimental investigation of flow boiling characteristics of water in parallel microchannels, Trans. ASME 126, 518-526 (2004)
[10] Chang, K. H.; Pan, C.: Two-phase flow instability for boiling in a microchannel heat sink, Int. J. Heat mass transfer 50, No. 11 – 12, 2078-2088 (2007)
[11] Wu, H. Y.; Cheng, P.: Visualization and measurements of periodic boiling in silicon microchannels, Int. J. Heat mass transfer 14, 2603-2614 (2003)
[12] Trutassanawin, S.; Groll, E. A.; Garimella, S. V.; Cremaschi, L.: Experimental investigation of a miniature-scale refrigeration system for electronics cooling, IEEE trans. Compon. pack. Technol. 29, 678-687 (2006)
[13] R. Mongia, K. Masahiro, E. DiStefano, Small scale refrigeration system for electronics cooling within a notebook computer, in: Proceedings of the ITHERM’06, 2006.
[14] P.E. Phelan, J. Swanson, F. Chiriac, V. Chiriac, Designing a mesoscale vapor compression refrigerator for cooling high-power microelectronics, in: Proceedings of the ITHERM’04, 2004.
[15] Lazarek, G. M.; Black, S. H.: Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, Int. J. Heat mass transfer 25, No. 7, 945-960 (1982)
[16] Tran, T. N.; Wambsganss, M. W.; France, D. M.: Small circular and rectangular channel boiling with two refrigerants, Int. J. Multiphase flow 22, 485-498 (1996) · Zbl 1135.76563 · doi:10.1016/0301-9322(96)00002-X
[17] Yan, Y.; Lin, T.: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe, Int. J. Heat mass transfer 41, 4183-4194 (1998)
[18] Lin, S.; Kew, P. A.; Cornwell, K.: Two-phase heat transfer to a refrigerant in a 1mm diameter tube, Int. J. Refrig. 24, 51-56 (2001)
[19] Lee, H. J.; Lee, S. Y.: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios, Int. J. Multiphase flow 27, 2043-2062 (2001) · Zbl 1137.76652 · doi:10.1016/S0301-9322(01)00054-4
[20] Saitoh, S.; Daiguji, H.; Hihara, E.: Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes, Int. J. Heat mass transfer 48, 4473-4984 (2005) · Zbl 1140.80366
[21] M.E. Steinke, S.G. Kandlikar, Flow boiling and pressure drop in parallel flow microchannels, in: Proceedings of the First International Conference on Microchannels and Minichannels, 2003.
[22] Taylor, J. R.: An introduction to error analysis, (1997)
[23] Churchill, S. E.: A comprehensive correlating equation for laminar, assisting, forced and free convection, Am. inst. Chem. eng. Aiche J. 23, No. 1, 10-16 (1977)
[24] Sieder, E. N.; Tate, G. E.: Heat transfer and pressure drop of liquids in tubes, Indust. eng. Chem. 28, 1429-1435 (1936)
[25] Liu, D.; Garimella, S. V.: Flow boiling heat transfer in microchannels, ASME J. Heat transfer 129, No. 10, 1321-1332 (2007)
[26] Tadrist, L.: Review on two-phase flow instabilities in narrow spaces, Int. J. Heat fluid flow 28, 54-62 (2007)
[27] Dupont, V.; Thome, J. R.; Jacobi, A. M.: Heat transfer model for evaporation in microchannels: part II. Comparison with the database, Int. J. Heat mass transfer 47, No. 14 – 16, 3387-3401 (2004) · Zbl 1121.76488 · doi:10.1016/j.ijheatmasstransfer.2004.01.007
[28] Wojtan, L.; Ursenbacher, T.; Thome, J. R.: Investigation of flow boiling in horizontal tubes: part II. Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes, Int. J. Heat mass transfer 48, No. 14, 2970-2985 (2005)
[29] Tuckerman, D. B.; Pease, R. F. W.: High-performance heat sinking for VLSI, IEEE electr. Dev. lett. 2, No. 5, 126-129 (1981)
[30] Molki, M.; Mahendra, P.; Vengala, V.: Visualization and modeling of flow boiling of R-134a in minichannels with transverse ribs, Heat transfer eng. 25, 94-103 (2004)
[31] Lee, J.; Mudawar, I.: Two phase flow in high-heat flux micro-channel heat sink for refrigeration cooling applications: part I – pressure drop characteristics, Int. J. Heat mass transfer 48, 928-940 (2005)
[32] Lee, J.; Mudawar, I.: Two phase flow in high-heat flux micro-channel heat sink for refrigeration cooling applications: part II – heat transfer characteristics, Int. J. Heat mass transfer 48, 941-955 (2005)
[33] Lee, P.; Garimella, S. V.; Liu, D.: Investigation of heat transfer in rectangular microchannels, Int. J. Heat mass transfer 48, 1688-1704 (2005)
[34] Lie, Y. M.; Lin, T. F.: Saturated flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, Int. J. Heat mass transfer 48, 5602-5615 (2005)
[35] Chen, T.; Garimella, S. V.: Measurements and high-speed visualization of flow boiling of a dielectric fluid in a silicon microchannel heat sink, Int. J. Multiphase flow 32, 957-971 (2006) · Zbl 1136.76484 · doi:10.1016/j.ijmultiphaseflow.2006.03.002
[36] Lie, Y. M.; Lin, T. F.: Subcooled flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, Int. J. Heat mass transfer 49, 2077-2089 (2006)
[37] Yen, T.; Shoji, M.; Takemura, F.; Suzuki, Y.; Kasagi, N.: Visualization of convective boiling heat transfer in single microchannels with different shaped cross-sections, Int. J. Heat mass transfer 49, 3884-3894 (2006) · Zbl 1108.80327 · doi:10.1016/j.ijheatmasstransfer.2005.12.024
[38] Yun, R.; Heo, J. H.; Kim, Y.: Evaporative heat transfer and pressure drop of R410A in microchannels, Int. J. Refrig. 29, 92-100 (2006)
[39] Schneider, B.; Kosar, A.; Peles, Y.: Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels, Int. J. Heat mass transfer 50, 2838-2854 (2007) · Zbl 1119.80350 · doi:10.1016/j.ijheatmasstransfer.2007.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.