×

Geometrization of the strong Novikov conjecture for residually finite groups. (English) Zbl 1154.46042

Let \(\Gamma\) be a finitely generated residually finite group, \(\{\Gamma_n\}_{n=1}^\infty\) a sequence of finite index normal subgroups of \(\Gamma\) such that \(\Gamma_n\supset\Gamma_{n+1}\) and \(\bigcap_{n=1}^\infty\Gamma_n=\{e\}\). It is proved that the strong Novikov conjecture for \(\Gamma\) is essentially equivalent to the coarse geometric Novikov conjecture for the box metric space \(\bigsqcup_{n=1}^\infty\Gamma/\Gamma_n\).
As a corollary, it is shown that the coarse geometric Novikov conjecture holds for sequences of expanders of some property (T) groups which are not coarsely embeddable into any uniformly convex Banach space.

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
19K14 \(K_0\) as an ordered group, traces
57R19 Algebraic topology on manifolds and differential topology
Full Text: DOI

References:

[1] Baum P., TX pp 167– (1993)
[2] DOI: 10.1016/0040-9383(90)90003-3 · Zbl 0759.58047 · doi:10.1016/0040-9383(90)90003-3
[3] DOI: 10.1007/BF01895513 · Zbl 0789.58069 · doi:10.1007/BF01895513
[4] Gromov M., Part pp 118– (2000)
[5] Guentner E., Publ. Math. Inst. Hautes E’t. Sci. 101 pp 243– (2005)
[6] DOI: 10.1007/PL00001630 · Zbl 0962.46052 · doi:10.1007/PL00001630
[7] DOI: 10.1007/s002220000118 · Zbl 0988.19003 · doi:10.1007/s002220000118
[8] DOI: 10.1007/s00039-002-8249-5 · Zbl 1014.46043 · doi:10.1007/s00039-002-8249-5
[9] DOI: 10.1007/BF01404917 · Zbl 0647.46053 · doi:10.1007/BF01404917
[10] Kasparov G., spaces and the Novikov conjecture, Ann. Math. 158 pp 165– (2) · Zbl 1029.19003 · doi:10.4007/annals.2003.158.165
[11] DOI: 10.1016/j.aim.2005.08.004 · Zbl 1102.19003 · doi:10.1016/j.aim.2005.08.004
[12] Ozawa N., Internat. J. Math. 15 pp 6– (2004)
[13] Roe J., Mem. Amer. Math. Soc. 104 pp 497– (1993)
[14] DOI: 10.1093/qjmath/53.2.241 · Zbl 1014.46045 · doi:10.1093/qjmath/53.2.241
[15] DOI: 10.1016/S0040-9383(01)00004-0 · Zbl 1033.19003 · doi:10.1016/S0040-9383(01)00004-0
[16] DOI: 10.1007/BF00961664 · Zbl 0829.19004 · doi:10.1007/BF00961664
[17] DOI: 10.2307/121011 · Zbl 0911.19001 · doi:10.2307/121011
[18] DOI: 10.1007/s002229900032 · Zbl 0956.19004 · doi:10.1007/s002229900032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.