×

Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces. (English) Zbl 1154.39003

The authors investigate the stability radii for delay difference systems in infinite-dimensional spaces described by a linear difference equation of the form:
\[ x(t+ K+ 1)= A_0 x(t+ K)+ A_1 x(t+ K-1) +\cdots+ A_k x(t),\quad t,K\in\mathbb{N}, \] where \(A_i\in{\mathcal L}(X)\), \(i\in \overline K= \{0,1,\dots, K\}\) under arbitrary parameters of the form
\[ A_i\mapsto A_i+ \sum^N_{j=1} D_{ij}\Delta_{ij} E_{ij},\quad i\in\overline K \] and
\[ A_i\mapsto A_i+ \sum^N_{j=1} \delta_{ij} A_{ij},\quad i\in\overline K, \]
where \(D_{ij}\in{\mathcal L}(U_{ij}, X)\), \(E_{ij}\in{\mathcal L}(X, Y_{ij})\) and \(A_{ij}\in{\mathcal L}(X)\), \(i\in\overline K\), \(j\in\overline N= \{1,2,\dots, N\}\) are given operators defining the scaling and structure of the parameter uncertainties, and \(A_{ij}\in{\mathcal L}(Y_{ij}, U_{ij})\) and \(\delta_{ij}\) are, respectively, unknown operators and scalar representing parameter uncertainties.

MSC:

39A11 Stability of difference equations (MSC2000)
Full Text: DOI

References:

[1] Anh, B. T.; Son, N. K.; Thanh, D. D.X., Robust stability of Metzler operator and delay equation in \(L^p([- h, 0] \text{;} X)\), Vietnam J. Math., 34, 357-368 (2006) · Zbl 1264.34130
[2] Bobylev, N. A.; Bulatov, A. V., A bound on the real stability radius of continuous-time linear infinite-dimensional systems, Comput. Math. Model., 4, 359-368 (2001) · Zbl 1038.93061
[3] Bulatov, A. V.; Diamond, P., Real structural stability radius of infinite-dimensional linear systems: its estimate, Automat. Remote Control, 5, 713-722 (2002) · Zbl 1090.93551
[4] Clark, S.; Latushkin, Y.; Montgomery-Smith, S.; Randolph, T., Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach, SIAM J. Control Optim., 36, 1757-1793 (2000) · Zbl 0978.47030
[5] Fischer, A., Stability radii of infinite-dimensional positive systems, Math. Control Signals Syst., 10, 223-236 (1997) · Zbl 0893.93021
[6] Hinrichsen, D.; Pritchard, A. J., Robust Stability of linear evolution operator on Banach spaces, SIAM J. Control Optim., 32, 1503-1541 (2000) · Zbl 0817.93055
[7] Ngoc, P. H.A.; Son, N. K., Stability radii of positive linear difference equations under affine parameter perturbation, Appl. Math. Comput., 134, 577-594 (2003) · Zbl 1030.39013
[8] Meyer-Nieberg, P., Banach Lattices (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0743.46015
[9] Qiu, L.; Bernhardsson, B.; Rantzerm, A.; Davison, E. J.; Young, P. M.; Doyle, J. C., A formula for computation of the real structured stability radius, Automatica, 31, 879-890 (1995) · Zbl 0839.93039
[10] Son, N. K.; Hinrichsen, D., On structured singular values and robust stability of positive system under affine perturbations, Vietnam J. Math., 24, 113-119 (1996) · Zbl 1066.93507
[11] Zaanen, A. C., Introduction to Operator Theory in Riez-Spaces (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0878.47022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.