×

Model Boltzmann equation for gas mixtures: Construction and numerical comparison. (English) Zbl 1153.76410

Summary: A new model for the nonlinear Boltzmann equation for gas mixtures is constructed by the method employed in the derivation of the McCormack model in the linearized kinetic theory [F. J. McCormack, Phys. Fluids 16, 2095–2105 (1973; Zbl 0274.76054)]. Then it is compared numerically with other existing models proposed by P. Andries, K. Aoki, B. Perthame [J. Stat. Phys. 106, No. 5–6, 993–1018 (2002; Zbl 1001.82093)] and in [L.H. Holway Jr., Phys. Fluids 9, 1658–1673 (1966)] (the so-called ES-BGK model) as well as with the original Boltzmann equation. The new model is not restricted to the Maxwell molecule, can fit to general molecular models, and reproduces well solutions of the Boltzmann equation at least in the case of weak nonequilibrium. The numerical comparison is performed in the case of a binary gas mixture consisted of the hard-sphere or pseudo Maxwell molecules, after parameters concerning the molecular interaction are adjusted appropriately.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Oxford University Press: Oxford University Press Oxford
[2] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[3] Welander, P., On the temperature jump in a rarefied gas, Ark. Fys., 7, 507-553 (1954) · Zbl 0057.23301
[4] L.H. Holway Jr., Approximation procedures for kinetic theory, Ph.D. Thesis, Harvard University, 1963; L.H. Holway Jr., Approximation procedures for kinetic theory, Ph.D. Thesis, Harvard University, 1963
[5] Holway, L. H., New statistical models for kinetic theory: Methods of construction, Phys. Fluids, 9, 1658-1673 (1966)
[6] Andries, P.; Le Tallec, P.; Perlat, J.-P.; Perthame, B., The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B/Fluids, 19, 813-830 (2000) · Zbl 0967.76082
[7] Andries, P.; Bourgat, J.-F.; Le Tallec, P.; Perthame, B., Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Comput. Methods Appl. Mech. Engrg., 191, 3369-3390 (2002) · Zbl 1101.76377
[8] Mieussens, L.; Struchtrup, H., Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16, 2797-2813 (2004) · Zbl 1186.76372
[9] Zheng, Y.; Struchtrup, H., Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency, Phys. Fluids, 17, 127103 (2005) · Zbl 1188.76184
[10] Muntz, E. P.; Alexeenko, A. A.; Gimelshein, S. F.; Ketsdever, A. D.; Han, Y.-L.; Young, M. P.; Park, J. H.; Ngalande, C.; Selden, N. P.; Lee, R. H., Low speed nano/micro/meso-scale rarefied flows driven by temperature and pressure gradients, (Ivanov, M. S.; Rebrov, A. K., Rarefied Gas Dynamics (2007), Siberian Branch of the Russian Academy of Sciences: Siberian Branch of the Russian Academy of Sciences Novosibirsk), 1085-1092
[11] Gross, E. P.; Krook, M., Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102, 593-604 (1956) · Zbl 0071.23603
[12] Sirovich, L., Kinetic modeling of gas mixtures, Phys. Fluids, 5, 908-918 (1962) · Zbl 0118.23602
[13] Morse, T. F., Kinetic model equations for a gas mixture, Phys. Fluids, 7, 2012-2013 (1964)
[14] Hamel, B. B., Kinetic model for binary gas mixtures, Phys. Fluids, 8, 418-425 (1965)
[15] Oppenheim, A., Nonlinear model of Boltzmann’s equations for a many-component gas, Phys. Fluids, 8, 992-993 (1965) · Zbl 0143.46702
[16] Oguchi, H., A kinetic model for a binary mixture and its application to a shock structure, (Brundin, C. L., Rarefied Gas Dynamics, vol. I (1967), Academic Press: Academic Press New York), 745-758
[17] Garzó, V.; Santos, A.; Brey, J. J., A kinetic model for a multicomponent gas, Phys. Fluids A, 1, 380-383 (1989) · Zbl 0661.76080
[18] Andries, P.; Aoki, K.; Perthame, B., A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106, 993-1018 (2002) · Zbl 1001.82093
[19] Kosuge, S.; Mizuno, H.; Aoki, K., Numerical investigation on models of the Boltzmann equation for gas mixtures, (Ivanov, M. S.; Rebrov, A. K., Rarefied Gas Dynamics (2007), Siberian Branch of the Russian Academy of Sciences: Siberian Branch of the Russian Academy of Sciences Novosibirsk), 286-291
[20] McCormack, F. J., Construction of linearized kinetic models for gaseous mixtures and molecular gases, Phys. Fluids, 16, 2095-2105 (1973) · Zbl 0274.76054
[21] Takata, S.; Sugimoto, H.; Kosuge, S., Gas separation by means of the Knudsen compressor, Eur. J. Mech. B/Fluids, 26, 155-181 (2007) · Zbl 1124.76048
[22] Sugimoto, H.; Takata, S.; Kosuge, S., Gas separation effect of the pump driven by the thermal edge flow, (Ivanov, M. S.; Rebrov, A. K., Rarefied Gas Dynamics (2007), Siberian Branch of the Russian Academy of Sciences: Siberian Branch of the Russian Academy of Sciences Novosibirsk), 1158-1163
[23] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1970), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0098.39702
[24] Cercignani, C., The Boltzmann Equation and Its Applications (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0646.76001
[25] Sone, Y., Molecular Gas Dynamics, Theory, Techniques, and Applications (2007), Birkhäuser: Birkhäuser Boston · Zbl 1144.76001
[26] Goldman, E.; Sirovich, L., Equations for gas mixtures, Phys. Fluids, 10, 1928-1940 (1967)
[27] Walker, E. L.; Tanenbaum, B. S., Investigation of kinetic models for gas mixtures, Phys. Fluids, 11, 1951-1954 (1968)
[28] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104
[29] Liu, G., A method for constructing a model form for the Boltzmann equation, Phys. Fluids A, 2, 277-280 (1990) · Zbl 0696.76091
[30] Shakhov, E. M., Approximate kinetic equations in rarefied gas theory, Fluid Dynamics, 3, 1, 112-115 (1968)
[31] Shakhov, E. M., Generalization of the Krook kinetic relaxation equation, Fluid Dynamics, 3, 5, 95-96 (1968)
[32] Segal, B. M.; Ferziger, J. H., Shock-wave structure using nonlinear model Boltzmann equations, Phys. Fluids, 15, 1233-1247 (1972) · Zbl 0247.76061
[33] Abe, T.; Oguchi, H., A hierarchy kinetic model and its applications, (Potter, J. L., Rarefied Gas Dynamics, vol. II (1977), AIAA: AIAA New York), 781-793
[34] Ferziger, J. H.; Kaper, H. G., Mathematical Theory of Transport Processes in Gases (1972), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam
[35] Sharipov, F.; Kalempa, D., Gaseous mixture flow through a long tube at arbitrary Knudsen numbers, J. Vac. Sci. Technol. A, 20, 814-822 (2002)
[36] Kosuge, S.; Takata, S., Database for flows of binary gas mixtures through a plane microchannel, Eur. J. Mech. B/Fluids, 27, 444-465 (2008) · Zbl 1154.76048
[37] Sone, Y.; Aoki, K.; Doi, T., Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas, Transp. Theory Stat. Phys., 21, 297-328 (1992) · Zbl 0818.76087
[38] Aoki, K.; Doi, T., High-speed vapor flows condensing on a plane condensed phase in the presence of a noncondensable gas, (Shizgal, B. D.; Weaver, D. P., Rarefied Gas Dynamics: Theory and Simulations (1994), AIAA: AIAA Washington, DC), 521-536
[39] Taguchi, S.; Aoki, K.; Takata, S., Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. I. Subsonic condensation, Phys. Fluids, 15, 689-705 (2003) · Zbl 1185.76362
[40] Taguchi, S.; Aoki, K.; Takata, S., Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. II. Supersonic condensation, Phys. Fluids, 16, 79-92 (2004) · Zbl 1186.76514
[41] Taguchi, S.; Aoki, K.; Latocha, V., Vapor flows along a plane condensed phase with weak condensation in the presence of a noncondensable gas, J. Stat. Phys., 124, 321-369 (2006) · Zbl 1134.82039
[42] Sone, Y., Kinetic theory of evaporation and condensation – linear and nonlinear problems, J. Phys. Soc. Jpn., 45, 315-320 (1978)
[43] Takata, S., Half-space problem of weak evaporation and condensation of a binary mixture of vapors, (Capitelli, M., Rarefied Gas Dynamics (2005), AIP: AIP New York), 503-508
[44] Takata, S.; Golse, F., Half-space problem of the nonlinear Boltzmann equation for weak evaporation and condensation of a binary mixture of vapors, Eur. J. Mech. B/Fluids, 26, 105-131 (2007) · Zbl 1145.76041
[45] Cercignani, C.; Sharipov, F., Gaseous mixture slit flow at intermediate Knudsen numbers, Phys. Fluids A, 4, 1283-1289 (1992) · Zbl 0767.76064
[46] Aoki, K.; Takata, S.; Kosuge, S., Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas, Phys. Fluids, 10, 1519-1533 (1998)
[47] Takata, S.; Aoki, K.; Muraki, T., Behavior of a vapor-gas mixture between two parallel plane condensed phases in the continuum limit, (Brun, R.; Campargue, R.; Gatignol, R.; Lengrand, J.-C., Rarefied Gas Dynamics, vol. 1 (1999), Cépaduès-Éditions: Cépaduès-Éditions Toulouse), 479-486
[48] Takata, S.; Aoki, K., Two-surface problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory, Phys. Fluids, 11, 2743-2756 (1999) · Zbl 1149.76559
[49] Phys. Fluids, 8, 841 (1996), Erratum: · Zbl 1027.76649
[50] Aoki, K.; Kosuge, S., Finite-difference methods for the Boltzmann equation for binary gas mixtures, (Degond, P.; Pareschi, L.; Russo, G., Modeling and Computational Methods for Kinetic Equations (2004), Birkhäuser: Birkhäuser Boston), 147-167 · Zbl 1106.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.