×

A note on the parabolic differential and difference equations. (English) Zbl 1153.35353

Summary: The differential equation \(u'(t)+ Au(t)= f(t)\) \((-\infty< t<\infty)\) in a general Banach space \(E\) with the strongly positive operator \(A\) is ill-posed in the Banach space \(C(E)= C(\mathbb{R},E)\) with norm \(\|\varphi\|_{C(E)}= \sup_{-\infty< t< \infty}\|\varphi(t)\|_E\). In the present paper, the well-posedness of this equation in the Hölder space \(C^\alpha(E)= C^\alpha(\mathbb{R},E)\) with norm \[ \|\varphi\|_{C^\alpha(E)}= \sup_{-\infty< t<\infty}\|\varphi(t)\|_E+ \sup_{-\infty< t< t+ s< \infty}(\|\varphi(t+ s)- \varphi(t)\|_E/s^\alpha),\;0< \alpha< 1, \] is established. The almost coercivity inequality for solutions of the Rothe difference scheme in \(C(\mathbb{R}_\tau,E)\) spaces is proved. The well-posedness of this difference scheme in \(C^\alpha(\mathbb{R}_\tau,E)\) spaces is obtained.

MSC:

35K90 Abstract parabolic equations
34G10 Linear differential equations in abstract spaces
39A12 Discrete version of topics in analysis
47D06 One-parameter semigroups and linear evolution equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, “Nauka”, Moscow, Russia, 1967. · Zbl 0164.12302
[2] M. I. Vishik, A. D. Myshkis, and O. A. Oleinik, “Partial differential equations,” in Mathematics in USSR in the Last 40 Years, 1917-1957, Vol. 1, pp. 563-599, Fizmatgiz, Moscow, Russia, 1959.
[3] P. E. Sobolevskii, “Well-posedness of difference elliptic equation,” Discrete Dynamics in Nature and Society, vol. 1, no. 3, pp. 219-231, 1997. · Zbl 0928.39002 · doi:10.1155/S1026022697000228
[4] P. E. Sobolevskii, “Coerciveness inequalities for abstract parabolic equations,” Doklady Akademii Nauk SSSR, vol. 157, no. 1, pp. 52-55, 1964 (Russian). · Zbl 0149.36001
[5] P. E. Sobolevskii, “Some properties of the solutions of differential equations in fractional spaces,” Trudy Naucno-Issledovatel’skogi Instituta Matematiki VGU, vol. 14, pp. 68-74, 1975 (Russian), [RZh. Mat. 1975:7 B825].
[6] G. Da Prato and P. Grisvard, “Sommes d’opérateurs linéaires et équations différentielles opérationnelles,” Journal de Mathématiques Pures et Appliquées. Neuvième Série, vol. 54, no. 3, pp. 305-387, 1975. · Zbl 0315.47009
[7] G. Da Prato and P. Grisvard, “Équations d’évolution abstraites non linéaires de type parabolique,” Comptes Rendus de l’Académie des Sciences Série A-B, vol. 283, no. 9, pp. A709-A711, 1976. · Zbl 0356.35048
[8] A. Ashyralyev, A. Hanalyev, and P. E. Sobolevskii, “Coercive solvability of the nonlocal boundary value problem for parabolic differential equations,” Abstract and Applied Analysis, vol. 6, no. 1, pp. 53-61, 2001. · Zbl 0996.35027 · doi:10.1155/S1085337501000495
[9] A. Ashyralyev and P. E. Sobolevskii, Positive Operators and the Fractional Spaces. The Methodical Instructions for the Students of Engineering Grups, Offset Laboratory VSU, Voronezh, Russia, 1989.
[10] A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, vol. 69 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1994. · Zbl 0803.65089
[11] A. Ashyralyev, I. Karatay, and P. E. Sobolevskii, “On well-posedness of the nonlocal boundary value problem for parabolic difference equations,” Discrete Dynamics in Nature and Society, vol. 2004, no. 2, pp. 273-286, 2004. · Zbl 1077.39015 · doi:10.1155/S1026022604403033
[12] A. E. Poli\vcka and P. E. Sobolevskii, “Correct solvability of parabolic difference equations in Bochner spaces,” Trudy Moskovskogo Matematicheskogo Obshchestva, vol. 36, pp. 29-57, 294, 1978 (Russian).
[13] A. Ashyralyev, “Nonlocal boundary-value problems for abstract parabolic equations: well-posedness in Bochner spaces,” Journal of Evolution Equations, vol. 6, no. 1, pp. 1-28, 2006. · Zbl 1117.65077 · doi:10.1007/s00028-005-0194-y
[14] P. E. Sobolevskii, “The coercive solvability of difference equations,” Doklady Akademii Nauk SSSR, vol. 201, no. 5, pp. 1063-1066, 1971 (Russian). · Zbl 0246.39002
[15] A. Ashyralyev and P. E. Sobolevskii, “The theory of interpolation of linear operators and the stability of difference schemes,” Doklady Akademii Nauk SSSR, vol. 275, no. 6, pp. 1289-1291, 1984 (Russian). · Zbl 0598.65038
[16] A. Ashyralyev, S. Piskarev, and L. Weis, “On well-posedness of difference schemes for abstract parabolic equations in Lp([0,1];E) spaces,” Numerical Functional Analysis & Optimization, vol. 23, no. 7-8, pp. 669-693, 2002. · Zbl 1022.65095 · doi:10.1081/NFA-120016264
[17] D. Guidetti, B. Karasözen, and S. Piskarev, “Approximation of abstract differential equations,” Journal of Mathematical Sciences (New York), vol. 122, no. 2, pp. 3013-3054, 2004. · Zbl 1111.47063 · doi:10.1023/B:JOTH.0000029696.94590.94
[18] A. Ashyralyev and P. E. Sobolevskii, “Well-posed solvability of the Cauchy problem for difference equations of parabolic type,” Nonlinear Analysis, vol. 24, no. 2, pp. 257-264, 1995. · Zbl 0818.65047 · doi:10.1016/0362-546X(94)E0004-Z
[19] A. Ashiraliev and P. E. Sobolevskii, “Differential schemes of the high-order accuracy for parabolic equations with variable-coefficients,” Dopovidi Akademii Nauk Ukrainskoi RSR, Seriya À- Fiziko-Matematichni ta Technichni Nauki, vol. 6, pp. 3-7, 1988 (Russian).
[20] A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, vol. 148 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 2004. · Zbl 1060.65055
[21] H. Amann, “Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,” Mathematische Nachrichten, vol. 186, pp. 5-56, 1997. · Zbl 0880.42007 · doi:10.1002/mana.3211860102
[22] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, vol. 18 of North-Holland Mathematical Library, North-Holland, Amsterdam, The Netherlands, 1978. · Zbl 0387.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.