×

Nearly quadratic modules. (English) Zbl 1153.20003

During the work on groups of local chacteristic \(p\), [see Groups, combinatorics, geometry, Durham 2001, World Scientific. 155-192 (2003; Zbl 1031.20008) for an overview] due to U. Meierfrankenfeld, B. Stellmacher and the reviewer, the importance of a certain type of so-called \(2F\)-modules \(V\) came up. These are \(\text{GF}(p)\)-modules \(V\) for a group \(G\) such that for some \(p\)-subgroup \(1\neq A\) of \(G\) we have \(|V/C_V(A)|\leq|A|^2\). This generalizes the notion of \(F\)-modules, where \(|V:C_V(A)|\leq|A|\). In a series of papers [J. Algebra 257, No. 2, 348-372 (2002; Zbl 1017.20005); J. Algebra 307, No. 2, 643-676 (2007; Zbl 1115.20002); Finite groups 2003. Proc. Gainesville conf. finite groups, Berlin: Walter de Gruyter. 117-183 (2004; Zbl 1085.20004)], R. M. Guralnick, R. Lawther and G. Malle determine the irreducible \(2F\)-modules for the automorphism groups of the quasi-simple groups. In the work quoted above the module has additional properties. First \([V,A,A,A]= 0\), which is said to be cubic action. Furthermore, \[ [V, A]+C_V(A)=[\langle v\rangle,A]+C_V(A)\quad\text{for each }v\in V\setminus[V, A]+C_V(A).\tag{*} \] These two conditions, i.e., cubic and (*), the authors took as the definition of a nearly quadratic module. It really generalizes the quadratic modules, which have \([V,A,A]=0\) and \([V,A]\leq C_V(A)\).
In this paper, the authors prove many interesting facts about nearly quadratic modules. Among them the three main theorems. The first one is a reduction theorem to simple modules. If \(V\) is a semisimple module for \(G\) and \(G=\langle\mathcal Q\rangle\), \(\mathcal Q\) a set of nearly quadratic (but not quadratic) subgroups. Then we get a partition \(G=\bigtimes_{i\in I}G_i\), \(G_i=\langle\mathcal Q_i\rangle\), \(\mathcal Q_i\subseteq Q\), \(V=C_V(G)\oplus\bigoplus_{i\in I}[V,G_i]\), where the \([V,G_i]\) are simple \(G_i\)-modules.
The second theorem treats the situation that \(V\) is simple and \(F^*(G)\neq Z(G)K\), \(K\) a component, for which \(V\) is a simple \(K\)-module. There are thirteen cases, which cannot be stated here.
Finally, as an application of this theorem, the authors show that if \(V\) is a faithful module with \(A\) acting nearly quadratically on \(V\) and \(K\) be a component of \(G\) such that \([K,A]\nleq K\) and \(|A:C_A(K)|>2\), then \(p=2\), \(|A:N_A(K)|=2\) and \(K\cong L_n(2)\) or \(L_2(2^m)\). It is worthwhile mentioning that all results in this paper are proved without using the classification of the finite simple groups.

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20D05 Finite simple groups and their classification
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
Full Text: DOI

References:

[1] Aschbacher, M., Finite Group Theory, Cambridge Stud. Adv. Math., vol. 10 (2000), Cambridge University Press: Cambridge University Press New York · Zbl 0965.20009
[2] Bundy, D.; Hebbinghaus, N.; Stellmacher, B., The local \(C(G, T)\) theorem, J. Algebra, 300, 2, 741-789 (2006) · Zbl 1102.20020
[3] Chermak, A., Quadratic action and the \(P_G(V)\)-theorem in arbitrary characteristic, J. Group Theory, 2, 1-13 (1999) · Zbl 0940.20016
[4] Gorenstein, D., Finite Groups (1980), Chelsea: Chelsea New York · Zbl 0185.05701
[5] Huppert, B., Endliche Gruppen I (1983), Springer: Springer Berlin
[6] Guralnick, R. M.; Malle, G., Classification of 2F-modules, I, J. Algebra, 257, 348-372 (2002) · Zbl 1017.20005
[7] Guralnick, R. M.; Malle, G., Classification of 2F-modules, II, (Finite Groups. Finite Groups, 2003 (2004), Walter de Gruyter GmbH & Co. KG: Walter de Gruyter GmbH & Co. KG Berlin), 117-183 · Zbl 1085.20004
[8] Guralnick, R. M.; Lawther, R.; Malle, G., \(2F\)-modules for nearly simple groups, J. Algebra, 307, 2, 643-676 (2007) · Zbl 1115.20002
[9] U. Meierfrankenfeld, B. Stellmacher, \(F\); U. Meierfrankenfeld, B. Stellmacher, \(F\) · Zbl 1234.20026
[10] U. Meierfrankenfeld, B. Stellmacher, The general FF; U. Meierfrankenfeld, B. Stellmacher, The general FF · Zbl 1262.20003
[11] Meierfrankenfeld, U.; Stellmacher, B.; Stroth, G., Groups of local characteristic \(p\). An overview, (Groups, Combinatorics & Geometry. Groups, Combinatorics & Geometry, Durham, 2001 (2003), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 155-192 · Zbl 1031.20008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.