×

The viscous-slip, diffusion-slip, and thermal-creep problems for a binary mixture of rigid spheres described by the linearized Boltzmann equation. (English) Zbl 1152.76462

Summary: An analytical version of the discrete-ordinates method (the ADO method) is used with recently established analytical expressions for the rigid-sphere scattering kernels to develop concise and particularly accurate solutions to the viscous-slip, the diffusion-slip, and the half-space thermal-creep problems for a binary gas mixture described by the linearized Boltzmann equation. In addition to a computation of the viscous-slip, the diffusion-slip, and the thermal-slip coefficients, for the case of Maxwell boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles are established for each species of particles. Numerical results are reported for two binary mixtures (Ne-Ar and He-Xe) with various molar concentrations.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Software:

LINPACK; EISPACK
Full Text: DOI

References:

[1] Williams, M. M.R., Mathematical Methods in Particle Transport Theory (1971), Butterworth: Butterworth London
[2] Cercignani, C., The Boltzmann Equation and its Applications (1988), Springer: Springer New York · Zbl 0646.76001
[3] Ferziger, J. H.; Kaper, H. G., Mathematical Theory of Transport Processes in Gases (1972), North-Holland: North-Holland Amsterdam
[4] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1952), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0049.26102
[5] Siewert, C. E., Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani-Lampis boundary condition, Phys. Fluids, 15, 1696-1701 (2003) · Zbl 1186.76481
[6] Barichello, L. B.; Camargo, M.; Rodrigues, P.; Siewert, C. E., Unified solutions to classical flow problems based on the BGK model, J. Appl. Math. Phys. (ZAMP), 52, 517-534 (2001) · Zbl 1017.76078
[7] Siewert, C. E.; Sharipov, F., Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients, Phys. Fluids, 14, 4123-4129 (2002) · Zbl 1185.76340
[8] Williams, M. M.R., A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat transfer, J. Appl. Math. Phys. (ZAMP), 52, 500-516 (2001) · Zbl 1017.76081
[9] Loyalka, S. K.; Hickey, K. A., The Kramers problem: Velocity slip and defect for a hard sphere gas with arbitrary accommodation, J. Appl. Math. Phys. (ZAMP), 41, 245-253 (1990) · Zbl 0699.76085
[10] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules, Phys. Fluids A, 1, 1588-1599 (1989) · Zbl 0695.76032
[11] Loyalka, S. K., Temperature jump and thermal creep slip: Rigid sphere gas, Phys. Fluids A, 1, 403-408 (1989) · Zbl 0661.76081
[12] Kramers, H. A.; Kistemaker, J., On the slip of a diffusing gas mixture along a wall, Physica, 10, 669-713 (1943)
[13] Onishi, Y., On the behavior of a slightly rarefied gas mixture over plane boundaries, J. Appl. Math. Phys. (ZAMP), 37, 573-596 (1986) · Zbl 0603.76078
[14] Sharipov, F.; Kalempa, D., Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient, Phys. Fluids, 15, 1800-1806 (2003) · Zbl 1186.76469
[15] Sharipov, F.; Kalempa, D., Velocity slip and temperature jump coefficients for gaseous mixtures. II. Thermal slip coefficient, Phys. Fluids, 16, 759-764 (2004) · Zbl 1186.76470
[16] Sharipov, F.; Kalempa, D., Velocity slip and temperature jump coefficients for gaseous mixtures. III. Diffusion slip coefficient, Phys. Fluids, 16, 3779-3785 (2004) · Zbl 1187.76478
[17] Siewert, C. E.; Valougeorgis, D., Concise and accurate solutions to half-space binary-gas flow problems defined by the McCormack model and specular-diffuse wall conditions, Eur. J. Mech. B Fluids, 23, 709-726 (2004) · Zbl 1058.76590
[18] Loyalka, S. K., Velocity slip coefficient and the diffusion slip velocity for a multicomponent gas mixture, Phys. Fluids, 14, 2599-2604 (1971) · Zbl 0247.76070
[19] Ivchenko, I. N.; Loyalka, S. K.; Tompson, R. V., Slip coefficients for binary gas mixtures, J. Vac. Sci. Technol. A, 15, 2375-2381 (1997)
[20] Ivchenko, I. N.; Loyalka, S. K.; Tompson, R. V., Boundary slip phenomena in a binary mixture, J. Appl. Math. Phys. (ZAMP), 53, 58-72 (2002) · Zbl 1041.76063
[21] Yasuda, S.; Takata, S.; Aoki, K., Numerical analysis of the shear flow of a binary mixture of hard-sphere gases over a plane wall, Phys. Fluids, 16, 1989-2003 (2004) · Zbl 1186.76586
[22] Takata, S.; Yasuda, S.; Kosuge, S.; Aoki, K., Numerical analysis of thermal-slip and diffusion-slip flows of a binary mixture of hard-sphere molecular gases, Phys. Fluids, 15, 3745-3766 (2003) · Zbl 1186.76516
[23] Garcia, R. D.M.; Siewert, C. E.; Williams, M. M.R., A formulation of the linearized Boltzmann equations for a binary mixture of rigid spheres, Eur. J. Mech. B Fluids, 24, 614-620 (2005) · Zbl 1069.76046
[24] Barichello, L. B.; Siewert, C. E., A discrete-ordinates solution for a non-grey model with complete frequency redistribution, J. Quant. Spectros. Radiat. Transfer, 62, 665-675 (1999)
[25] Garcia, R. D.M.; Siewert, C. E., Some exact results basic to the linearized Boltzmann equations for a binary mixture of rigid spheres, J. Appl. Math. Phys. (ZAMP), 57, 999-1010 (2006) · Zbl 1101.76052
[26] Garcia, R. D.M.; Siewert, C. E., Some solutions (linear in the spatial variables) and generalized Chapman-Enskog functions basic to the linearized Boltzmann equations for a binary mixture of rigid spheres, J. Appl. Math. Phys. (ZAMP) (2007) · Zbl 1113.76084
[27] Garcia, R. D.M.; Siewert, C. E., The temperature-jump problem based on the linearized Boltzmann equation for a binary mixture of rigid spheres, Eur. J. Mech. B Fluids, 26, 132-153 (2007) · Zbl 1105.76052
[28] Pekeris, C. L., Solution of the Boltzmann-Hilbert integral equation, Proc. Natl. Acad. Sci., 41, 661-669 (1955) · Zbl 0065.09202
[29] Siewert, C. E.; Valougeorgis, D., The McCormack model: channel flow of a binary gas mixture driven by temperature, pressure and density gradients, Eur. J. Mech. B Fluids, 23, 645-664 (2004) · Zbl 1060.76631
[30] Sharipov, F., Heat transfer in the Knudsen layer, Phys. Rev. E, 69, 061201 (2004)
[31] Siewert, C. E., On computing the thermal-slip coefficient from Kramers’ problem, Phys. Fluids, 16, 2132-2135 (2004) · Zbl 1186.76482
[32] McCormack, F. J., Construction of linearized kinetic models for gaseous mixtures and molecular gases, Phys. Fluids, 16, 2095-2105 (1973) · Zbl 0274.76054
[33] Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler, C. B., Matrix Eigensystem Routines - EISPACK Guide (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0325.65016
[34] Dongarra, J. J.; Bunch, J. R.; Moler, C. B.; Stewart, G. W., LINPACK Users’ Guide (1979), SIAM: SIAM Philadelphia · Zbl 0476.68025
[35] Siewert, C. E., The linearized Boltzmann equation: Concise and accurate solutions to basic flow problems, J. Appl. Math. Phys. (ZAMP), 54, 273-303 (2003) · Zbl 1022.76046
[36] Bentz, J. A.; Tompson, R. V.; Loyalka, S. K., Viscosity and velocity slip coefficients for gas mixtures: Measurements with a spinning rotor gauge, J. Vac. Sci. Technol. A, 17, 235-241 (1999)
[37] Huang, C. M.; Tompson, R. V.; Ghosh, T. K.; Ivchenko, I. N.; Loyalka, S. K., Measurements of thermal creep in binary gas mixtures, Phys. Fluids, 11, 1662-1672 (1999) · Zbl 1147.76418
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.