×

Asymptotic Green’s function in homogeneous anisotropic viscoelastic media. (English) Zbl 1152.74010

Summary: We derive an asymptotic Green’s function for homogeneous anisotropic viscoelastic media. The Green’s function for viscoelastic media is formally similar to that for elastic media, but its computation is more involved. The stationary slowness vector is, in general, complex-valued and inhomogeneous. Its computation involves finding two independent real-valued unit vectors which specify the directions of its real and imaginary parts and can be done either by iterations or by solving a system of coupled polynomial equations. When the stationary slowness direction is found, all quantities standing in Green’s function such as the slowness vector, polarization vector, phase and energy velocities and principal curvatures of the slowness surface can readily be calculated. The formulae for exact and asymptotic Green’s functions are numerically checked against closed-form solutions for isotropic and simple anisotropic, elastic and viscoelastic models. The calculations confirm that the formulae and developed numerical codes are correct. The computation of the \(P\)-wave Green’s function in two realistic materials with a rather strong anisotropy and absorption indicates that the asymptotic Green’s function is accurate at distances greater than several wavelengths from the source. The error in the modulus reaches at most 4% at distances greater than 15 wavelengths from the source.

MSC:

74D05 Linear constitutive equations for materials with memory
74E10 Anisotropy in solid mechanics
74J10 Bulk waves in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

References:

[1] Aki, K. & Richards, P.G. 2002 Quantitative seismology. Sausalito, CA: University Science Books.
[2] Auld, B.A. 1973 Acoustic fields and waves in solids. New York, NY: Wiley.
[3] Ben-Menahem, A. & Singh, S.J. 1981 Seismic waves and sources. New York, NY: Springer. · Zbl 0484.73089
[4] Borcherdt, R.D. 1977 Reflection–refraction of type-II S waves in elastic and anelastic media. <i>Bull. Seism. Soc. Am.</i> <b>67</b>, 43–67.
[5] Borcherdt, R.D. 1982 Reflection–refraction of general <i>P</i>- and type-I <i>S</i> waves in elastic and anelastic solids. <i>Geophys. J. R. Astron. Soc.</i> <b>70</b>, 621–638. · Zbl 0505.73011
[6] Boulanger, P. 1998 Energy flux for damped inhomogeneous plane waves in viscoelastic fluids. <i>Wave Motion</i> <b>28</b>, 215–225, (doi:10.1016/S0165-2125(98)00011-0). · Zbl 1074.76545
[7] Brokešová, J. 2001 Reflection/transmission coefficients at a plane interface in dissipative and nondissipative isotropic media: a comparison. <i>J. Comput. Acoust.</i> <b>9</b>, 623–641, (doi:10.1142/S0218396X01000760).
[8] Buchwald, V.T. 1959 Elastic waves in anisotropic media. <i>Proc. R. Soc. A</i> <b>253</b>, 563–580, (doi:10.1098/rspa.1959.0221). · Zbl 0092.42304
[9] Burridge, R. 1967 The singularity on the plane lids of the wave surface of elastic media with cubic symmetry. <i>Q. J. Mech. appl. Math.</i> <b>20</b>, 41–56, (doi:10.1093/qjmam/20.1.41). · Zbl 0189.26501
[10] Burridge, R., Chadwick, P. & Norris, A.N. 1993 Fundamental elastodynamic solutions for anisotropic media with ellipsoidal slowness surfaces. <i>Proc. R. Soc. A</i> <b>440</b>, 655–681, (doi:10.1098/rspa.1993.0039). · Zbl 0793.73020
[11] Carcione, J.M. 1990 Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields. <i>Geophys. J. Int.</i> <b>101</b>, 739–750, [Erratum in <i>Geophys. J. Int.</i> 1992, <b>111</b>, 191.], (doi:10.1111/j.1365-246X.1990.tb05580.x). · Zbl 0701.73015
[12] Carcione, J.M. 1994 Wavefronts in dissipative anisotropic media. <i>Geophysics</i> <b>59</b>, 644–657, (doi:10.1190/1.1443624).
[13] Carcione, J.M. 2001 Wave fields in real media: wave propagation in anisotropic, anelastic and porous media. Amsterdam, The Netherlands: Pergamon.
[14] Carcione, J.M. & Cavallini, F. 1993 Energy balance and fundamental relations in anisotropic–viscoelastic media. <i>Wave Motion</i> <b>18</b>, 11–20, (doi:10.1016/0165-2125(93)90057-M). · Zbl 0815.73014
[15] Carcione, J.M. & Cavallini, F. 1995 Attenuation and quality factor surfaces in anisotropic–viscoelastic media. <i>Mech. Mater.</i> <b>19</b>, 311–327, (doi:10.1016/0167-6636(94)00040-N).
[16] Caviglia, G. & Morro, A. 1992 Inhomogeneous waves in solids and fluids. Singapore: World Scientific. · Zbl 0803.73004
[17] Červený, V. 2001 Seismic ray theory. Cambridge, UK: Cambridge University Press. · Zbl 0990.86001
[18] Červený, I. & Pšenčík, V. 2005 Plane waves in viscoelastic anisotropic media–I. Theory. <i>Geophys. J. Int.</i> <b>161</b>, 197–212, (doi:10.1111/j.1365-246X.2005.02589.x).
[19] Červený, V. & Pšenčík, I. 2006 Energy flux in viscoelastic anisotropic media. <i>Geophys. J. Int.</i> <b>166</b>, 1299–1317, (doi:10.1111/j.1365-246X.2006.03057.x).
[20] Daley, P.F. & Krebes, E.S. 2004 <i>SH</i> wave propagation in viscoelastic media. <i>Stud. Geophys. Geod.</i> <b>48</b>, 563–587, (doi:10.1023/B:SGEG.0000037472.40481.cd).
[21] Deschamps, M., Poirée, B. & Poncelet, O. 1997 Energy velocity of complex harmonic plane waves in viscous fluids. <i>Wave Motion</i> <b>25</b>, 51–60, (doi:10.1016/S0165-2125(96)00032-7). · Zbl 0921.76054
[22] Every, A.G. & Kim, K.Y. 1994 Time domain dynamic response functions of elastically anisotropic solids. <i>J. Acoust. Soc. Am.</i> <b>95</b>, 2505–2516, (doi:10.1121/1.409860).
[23] Gridin, D. 2000 Far-field asymptotics of the Green tensor for a transversely isotropic solid. <i>Proc. R. Soc. A</i> <b>456</b>, 571–591, (doi:10.1098/rspa.2000.0531). · Zbl 0991.74042
[24] Hosten, B., Deschamps, M. & Tittmann, B.R. 1987 Inhomogeneous wave propagation in lossy anisotropic solids. Application to the characterization of viscoelastic composite materials. <i>J. Acoust. Soc. Am.</i> <b>82</b>, 1763–1770, (doi:10.1121/1.395170).
[25] Klimeš, L. 2002 Relation of the wave-propagation metric tensor to the curvatures of the slowness and ray-velocity surfaces. <i>Stud. Geophys. Geod.</i> <b>46</b>, 589–597, (doi:10.1023/A:1019551320867).
[26] Krebes, E.S. 1983 The viscoelastic reflection/transmission problem: two special cases. <i>Bull. Seism. Soc. Am.</i> <b>73</b>, 1673–1683.
[27] Moczo, P., Robertsson, J.O.A. & Eisner, L. 2007 The finite-difference time-domain method for modelling of seismic wave propagation. <i>Advances in geophysics</i><i>Advances in wave propagation in heterogeneous Earth</i> (eds. Wu, R.-S. Maupin, V. & Dmowska, R.), vol. 48. pp. 421–516, Amsterdam, The Netherlands: Elsevier/Academic Press
[28] Mura, T. 1987 Micromechanics of defects in solids. 2nd edn. Dordrecht, The Netherlands: Martinus Nijhoff.
[29] Nechtschein, S. & Hron, F. 1996 Reflection and transmission coefficients between two anelastic media using asymptotic ray theory. <i>Can. J. Expl. Geophys.</i> <b>32</b>, 31–40.
[30] Norris, A.N. 1994 Dynamic Green functions in anisotropic piezoelectric, thermoelastic and poroelastic solids. <i>Proc. R. Soc. A</i> <b>447</b>, 175–188, (doi:10.1098/rspa.1994.0134). · Zbl 0813.73054
[31] Payton, R.G. 1983 Elastic wave propagation in transversely isotropic media. The Hague, The Netherlands: Martinus Nijhoff Publishers. · Zbl 0574.73023
[32] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 2002 Numerical recipes: the art of scientific computing. Cambridge, UK: Cambridge University Press. · Zbl 1078.65500
[33] Richards, P.G. 1984 On wavefronts and interfaces in anelastic media. <i>Bull. Seism. Soc. Am.</i> <b>74</b>, 2157–2165.
[34] Saenger, E.H. & Bohlen, T. 2004 Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. <i>Geophysics</i> <b>69</b>, 583–591, (doi:10.1190/1.1707078).
[35] Shuvalov, A.L. 2001 On the theory of plane inhomogeneous waves in anisotropic elastic media. <i>Wave Motion</i> <b>34</b>, 401–429, (doi:10.1016/S0165-2125(01)00080-4).
[36] Shuvalov, A.L. & Scott, N.H. 1999 On the properties of homogeneous viscoelastic waves. <i>Q. J. Mech. Appl. Math</i> <b>52</b>, 405–417, (doi:10.1093/qjmam/52.3.405). · Zbl 0953.74037
[37] Vavryčuk, V. 1999 Properties of <i>S</i> waves near a kiss singularity: a comparison of exact and ray solutions. <i>Geophys. J. Int.</i> <b>138</b>, 581–589, (doi:10.1046/j.1365-246X.1999.00887.x).
[38] Vavryčuk, V. 2001 Exact elastodynamic Green functions for simple types of anisotropy derived from higher-order ray theory. <i>Stud. Geophys. Geod.</i> <b>45</b>, 67–84, (doi:10.1023/A:1021754530968).
[39] Vavryčuk, V. 2002 Asymptotic elastodynamic Green function in the kiss singularity in homogeneous anisotropic solids. <i>Stud. Geophys. Geod.</i> <b>46</b>, 249–266, (doi:10.1023/A:1019854020095).
[40] Vavryčuk, V. 2003 Parabolic lines and caustics in homogeneous weakly anisotropic solids. <i>Geophys. J. Int.</i> <b>152</b>, 318–334, (doi:10.1046/j.1365-246X.2003.01845.x).
[41] Vavryčuk, V. 2006 Calculation of the slowness vector from the ray vector in anisotropic media. <i>Proc. R. Soc. A</i> <b>462</b>, 883–896, (doi:10.1098/rspa.2005.1605). · Zbl 1149.74317
[42] Vavryčuk, V. 2006 Comment to ”qS-waves in a vicinity of the axis of symmetry of homogeneous transversely isotropic media”, by M. Popov, G. F. Passos, and M. A. Botelho [Wave Motion 42 (2005) 191–201]. <i>Wave Motion</i> <b>44</b>, 128–136, (doi:10.1016/j.wavemoti.2006.08.004). · Zbl 1189.74062
[43] Wang, C.-Y. & Achenbach, J.D. 1994 Elastodynamic fundamental solutions for anisotropic solids. <i>Geophys. J. Int.</i> <b>118</b>, 384–392, (doi:10.1111/j.1365-246X.1994.tb03970.x).
[44] Wennerberg, L. 1985 Snell’s law for viscoelastic materials. <i>Geophys. J. Roy. Astron. Soc.</i> <b>81</b>, 13–18.
[45] Willis, J.R. 1980 A polarization approach to the scattering of elastic waves. I. Scattering by a single inclusion. <i>J. Mech. Phys. Solids</i> <b>28</b>, 287–305, (doi:10.1016/0022-5096(80)90021-6).
[46] Zhu, Y. & Tsvankin, I. 2006 Plane-wave propagation in attenuative transversely isotropic media. <i>Geophysics</i> <b>71</b>, T17–T30, (doi:10.1190/1.2187792).
[47] Zhu, Y. & Tsvankin, I. 2007 Plane-wave attenuation anisotropy in orthorhombic media. <i>Geophysics</i> <b>72</b>, D9–D19, (doi:10.1190/1.2387137).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.