×

The numbers of periodic orbits hidden at fixed points of \(n\)-dimensional holomorphic mappings. (English) Zbl 1152.37019

Summary: Let \(M\) be a positive integer and let \(f\) be a holomorphic mapping from a ball \(\Delta ^{n}=\{x\in \mathbb C^{n}:|x|<\delta \}\) into \(\mathbb C^{n}\) such that the origin 0 is an isolated fixed point of both \(f\) and \(f^{M}\), the \(M\)th iteration of \(f\). Then one can define the number \(\mathcal O_{M}(f\),0), interpreted as the number of periodic orbits of \(f\) with period \(M\) that are hidden at the fixed point 0. For an \(n\times n\) matrix \(A\) whose eigenvalues are all the same primitive \(M\)th root of unity, we give a sufficient and necessary condition on \(A\) such that for any holomorphic mapping \(f:\Delta ^{n}\rightarrow\mathbb C^{n}\) with \(f(0)=0\) and \(Df(0)=A\), if 0 is an isolated fixed point of the \(M\)th iteration \(f^{M}\) , then \(\mathcal O_{M} (f,0)\geq 2\).

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37C27 Periodic orbits of vector fields and flows
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
Full Text: DOI

References:

[1] Milnor, Introductory Lectures (1999)
[2] Lloyd, Degree Theory (1978)
[3] Hardy, An Introduction to the Theory of Numbers (1979) · Zbl 0423.10001
[4] DOI: 10.1090/S0002-9947-00-02608-8 · Zbl 0947.55001 · doi:10.1090/S0002-9947-00-02608-8
[5] DOI: 10.1007/BF01394243 · Zbl 0583.55001 · doi:10.1007/BF01394243
[6] DOI: 10.2307/1969827 · Zbl 0050.34301 · doi:10.2307/1969827
[7] DOI: 10.1016/0040-9383(74)90009-3 · Zbl 0291.58014 · doi:10.1016/0040-9383(74)90009-3
[8] DOI: 10.1007/BFb0061414 · doi:10.1007/BFb0061414
[9] Arrowsmith, An Introduction to Dynamical Systems (1990) · Zbl 0702.58002
[10] DOI: 10.1007/s00208-006-0042-6 · Zbl 1110.32007 · doi:10.1007/s00208-006-0042-6
[11] DOI: 10.1007/BF02878713 · Zbl 1019.37010 · doi:10.1007/BF02878713
[12] DOI: 10.1112/S0024611599011910 · Zbl 0974.32011 · doi:10.1112/S0024611599011910
[13] Chirka, Complex Analytic Sets (1989) · doi:10.1007/978-94-009-2366-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.