×

The variant of post-Newtonian mechanics with generalized fractional derivatives. (English) Zbl 1151.83316

Editorial remark: No review copy delivered

MSC:

83C25 Approximation procedures, weak fields in general relativity and gravitational theory
26A33 Fractional derivatives and integrals

References:

[1] DOI: 10.1002/andp.200510170 · Zbl 1098.83004 · doi:10.1002/andp.200510170
[2] DOI: 10.12942/lrr-2002-4 · Zbl 1023.83026 · doi:10.12942/lrr-2002-4
[3] DOI: 10.1063/1.1633491 · doi:10.1063/1.1633491
[4] DOI: 10.1007/BF02395016 · Zbl 0033.27601 · doi:10.1007/BF02395016
[5] Treves F., Introduction to Pseudodifferential and Fourier Integral Operators (1982)
[6] Samko S. O., Fractional Integrals and Derivatives (1993)
[7] Schouten J. A., Tensor Analysis for Physicists (1951) · Zbl 0044.38302
[8] Landau L. D., The Classical Theory of Fields (1971)
[9] Reed M., Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-adjointness (1992) · Zbl 0308.47002
[10] DOI: 10.1103/PhysRevLett.61.1159 · doi:10.1103/PhysRevLett.61.1159
[11] Bond V. R., Modern Astrodynamics: Fundamentals and Perturbation Methods (1996)
[12] DOI: 10.1007/s11208-005-0033-2 · doi:10.1007/s11208-005-0033-2
[13] DOI: 10.1023/A:1023673227013 · doi:10.1023/A:1023673227013
[14] Lense J., Phys. Z. 19 pp 156– (1918)
[15] DOI: 10.1007/978-3-662-04849-8 · doi:10.1007/978-3-662-04849-8
[16] DOI: 10.1086/316548 · doi:10.1086/316548
[17] DOI: 10.1007/978-3-662-03758-4 · doi:10.1007/978-3-662-03758-4
[18] DOI: 10.1103/PhysRevD.72.062001 · doi:10.1103/PhysRevD.72.062001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.