×

Exact solutions of Rayleigh-Stokes problem for heated generalized Maxwell fluid in a porous half-space. (English) Zbl 1151.76006

Summary: We investigate the Rayleigh-Stokes problem for generalized Maxwell fluid in porous half-space with a heated flat plate. For the description of such a viscoelastic fluid, a fractional calculus approach in the constitutive model is used. By using the Fourier sine transform and the fractional Laplace transform, w obtain exact solutions for velocity and temperature. Some classical results can be regarded as particular cases of our results, such as the classical solutions of the first problem of Stokes for Newtonian viscous fluids, Maxwell fluids, and Maxwell fluids in a porous half-space.

MSC:

76A10 Viscoelastic fluids
76S05 Flows in porous media; filtration; seepage
80A20 Heat and mass transfer, heat flow (MSC2010)

References:

[1] R. L. Bagley and P. J. Torvik, “A theoretical basis for the application of fractional calculus to viscoelasticity,” Journal of Rheology, vol. 27, no. 3, pp. 201-210, 1983. · Zbl 0515.76012 · doi:10.1122/1.549724
[2] C. Friedrich, “Relaxation and retardation functions of the Maxwell model with fractional derivatives,” Rheologica Acta, vol. 30, no. 2, pp. 151-158, 1991. · doi:10.1007/BF01134604
[3] J. Huang, G. He, and C. Liu, “Analysis of general second-order fluid flow in double cylinder rheometer,” Science in China Series A, vol. 40, no. 2, pp. 183-190, 1997. · Zbl 0891.76006 · doi:10.1007/BF02874437
[4] G. He, J. Huang, and C. Liu, “General second order fluid flow in a pipe,” Applied Mathematics and Mechanics, vol. 16, no. 9, pp. 825-831, 1995. · Zbl 0845.76007 · doi:10.1007/BF02458607
[5] M.-Y. Xu and W.-C. Tan, “Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion,” Science in China Series A, vol. 44, no. 11, pp. 1387-1399, 2001. · Zbl 1138.76320 · doi:10.1007/BF02877067
[6] M.-Y. Xu and W.-C. Tan, “The representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions,” Science in China Series A, vol. 32, no. 8, pp. 673-681, 2002.
[7] M.-Y. Xu and W.-C. Tan, “Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics,” Science in China Series G, vol. 49, no. 3, pp. 257-272, 2006. · Zbl 1109.26005 · doi:10.1007/s11433-006-0257-2
[8] W.-C. Tan and M.-Y. Xu, “The impulsive motion of flat plate in a general second grade fluid,” Mechanics Research Communication, vol. 29, no. 1, pp. 3-9, 2002. · Zbl 1151.76368 · doi:10.1016/S0093-6413(02)00223-9
[9] W.-C. Tan and M.-Y. Xu, “Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model,” Acta Mechanica Sinica, vol. 18, no. 4, pp. 342-349, 2002. · doi:10.1007/BF02487786
[10] W.-C. Tan, F. Xian, and L. Wei, “An exact solution of unsteady Couette flow of generalized second grade fluid,” Chinese Science Bulletin, vol. 47, no. 21, pp. 1783-1785, 2002.
[11] W.-C. Tan, W. X. Pan, and M.-Y. Xu, “A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates,” International Journal of Non-Linear Mechanics, vol. 38, no. 5, pp. 645-650, 2003. · Zbl 1346.76009 · doi:10.1016/S0020-7462(01)00121-4
[12] W.-C. Tan and M.-Y. Xu, “Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates,” Acta Mechanica Sinica, vol. 20, no. 5, pp. 471-476, 2004.
[13] F. Shen, W.-C. Tan, Y.-H. Zhao, and T. Masuoka, “Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid,” Applied Mathematics and Mechanics, vol. 25, no. 10, pp. 1151-1159, 2004. · Zbl 1088.76004 · doi:10.1007/BF02439867
[14] F. Shen, W.-C. Tan, Y. Zhao, and T. Masuoka, “The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model,” Nonlinear Analysis: Real World Applications, vol. 7, no. 5, pp. 1072-1080, 2006. · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007
[15] I. Teipel, “The impulsive motion of a flat plate in a viscoelastic fluid,” Acta Mechanica, vol. 39, no. 3-4, pp. 277-279, 1981. · doi:10.1007/BF01170349
[16] K. R. Rajagopal, “A note on unsteady unidirectional flows of a non-Newtonian fluid,” International Journal of Non-Linear Mechanics, vol. 17, no. 5-6, pp. 369-373, 1982. · Zbl 0527.76003 · doi:10.1016/0020-7462(82)90006-3
[17] K. R. Rajagopal and A. S. Gupta, “On a class of exact solutions to the equations of motion of a second grade fluid,” International Journal of Engineering Science, vol. 19, no. 7, pp. 1009-1014, 1981. · Zbl 0466.76008 · doi:10.1016/0020-7225(81)90135-X
[18] K. R. Rajagopal and A. S. Gupta, “An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate,” Meccanica, vol. 19, no. 2, pp. 158-160, 1984. · Zbl 0552.76008 · doi:10.1007/BF01560464
[19] C. Friedrich, “Relaxation and retardation functions of the Maxwell model with fractional derivatives,” Rheologica Acta, vol. 30, no. 2, pp. 151-158, 1991. · doi:10.1007/BF01134604
[20] W.-C. Tan and T. Masuoka, “Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary,” International Journal of Non-Linear Mechanics, vol. 40, no. 4, pp. 515-522, 2005. · Zbl 1349.76830 · doi:10.1016/j.ijnonlinmec.2004.07.016
[21] W.-C. Tan and T. Masuoka, “Stokes’ first problem for an Oldroyd-B fluid in a porous half space,” Physics of Fluids, vol. 17, no. 2, Article ID 023101, 7 pages, 2005. · Zbl 1187.76517 · doi:10.1063/1.1850409
[22] W.-C. Tan, “Velocity overshoot of start-up flow for a Maxwell fluid in a porous half-space,” Chinese Physics, vol. 15, no. 11, pp. 2644-2650, 2006. · doi:10.1088/1009-1963/15/11/031
[23] W.-C. Tan and T. Masuoka, “Stability analysis of a Maxwell fluid in a porous medium heated from below,” Physics Letters A, vol. 360, no. 3, pp. 454-460, 2007. · Zbl 1236.76072 · doi:10.1016/j.physleta.2006.08.054
[24] F. Capuani, D. Frenkel, and C. P. Lowe, “Velocity fluctuations and dispersion in a simple porous medium,” Physical Review E, vol. 67, no. 52, Article ID 056306, 8 pages, 2003. · doi:10.1103/PhysRevE.67.056306
[25] G. M. Alisaev and A. K. Mirzadjanzade, “For the calculation of delay phenomenon in filtration theory,” Izvestiya Vysshikh Uchebnykh Zavedeniy. Neft’ i Gaz, vol. 6, pp. 71-78, 1975.
[26] B. Khuzhayorov, J.-L. Auriault, and P. Royer, “Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media,” International Journal of Engineering Science, vol. 38, no. 5, pp. 487-504, 2000. · Zbl 1210.76177 · doi:10.1016/S0020-7225(99)00048-8
[27] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[28] K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” International Journal of Heat and Mass Transfer, vol. 24, no. 2, pp. 195-203, 1981. · Zbl 0464.76073 · doi:10.1016/0017-9310(81)90027-2
[29] T. Masuoka and Y. Takatsu, “Turbulence characteristics in porous media,” in Transport Phenomena in Porous Media Vol. II, D. B. Ingham and I. Pop, Eds., pp. 231-256, Pergamon Press, Oxford, UK, 2002. · Zbl 1276.76028 · doi:10.1016/B978-008043965-5/50010-6
[30] D. B. Ingham and I. Pop, Eds., Transport Phenomena in Porous Media II, Pergamon Press, Oxford, UK, 2002. · Zbl 1012.00023
[31] P. N. Kaloni and J. X. Lou, “Stability of Hadley circulations in a Maxwell fluid,” Journal of Non-Newtonian Fluid Mechanics, vol. 103, no. 2-3, pp. 167-186, 2002. · Zbl 1047.76007 · doi:10.1016/S0377-0257(01)00197-5
[32] A. Younes, “On modelling the multidimensional coupled fluid flow and heat or mass transport in porous media,” International Journal of Heat and Mass Transfer, vol. 46, no. 2, pp. 367-379, 2003. · Zbl 1121.76416 · doi:10.1016/S0017-9310(02)00264-8
[33] D. A. Nield and B. Adrian, Convection in Porous Media, Springer, Berlin, Germany, 2nd edition, 1999. · Zbl 0924.76001
[34] A. K. Al-Hadhrami, L. Elliott, and D. B. Ingham, “Combined free and forced convection in vertical channels of porous media,” Transport in Porous Media, vol. 49, no. 3, pp. 265-289, 2002. · doi:10.1023/A:1016290505000
[35] A. K. Al-Hadhrami, L. Elliott, and D. B. Ingham, “A new model for viscous dissipation in porous media across a range of permeability values,” Transport in Porous Media, vol. 53, no. 1, pp. 117-122, 2003. · doi:10.1023/A:1023557332542
[36] E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 1977. · Zbl 0247.76079
[37] D. A. Nield, A. V. Kuznetsov, and M. Xiong, “Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects,” International Journal of Heat and Mass Transfer, vol. 46, no. 4, pp. 643-651, 2003. · Zbl 1038.76041 · doi:10.1016/S0017-9310(02)00327-7
[38] P. M. Jordan, A. Puri, and G. Boros, “On a new exact solution to Stokes’ first problem for Maxwell fluids,” International Journal of Non-Linear Mechanics, vol. 39, no. 8, pp. 1371-1377, 2004. · Zbl 1348.76024 · doi:10.1016/j.ijnonlinmec.2003.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.