×

A sufficient condition for global regularity of the \(\bar {\partial}\)-Neumann operator. (English) Zbl 1151.32014

The following new sufficient condition for exact regularity is given: Let \(\Omega \) be a smooth bounded pseudoconvex domain in \(\mathbb{C}^n,\) \(\rho \) a defining function for \(\Omega .\) Let \(1\leq q \leq n.\) Assume that there is a constant \(C\) such that for all \(\epsilon >0\) there exist a defining function \(\rho_\epsilon \) for \(\Omega \) and a constant \(C_\epsilon \) with \(1/C < | \nabla \rho_\epsilon | < C \) on \(b\Omega,\) and \[ \left \| \sum_{| K| =q-1} \, ' \left ( \sum_{j,k=1}^n \frac{\partial^2 \rho_\epsilon}{\partial z_j \partial \overline{z_k}}\, \frac{\partial \rho}{\partial \overline{z_j}}\, \overline{u_{kK}} \right ) d\overline{z_K} \right \| ^2 \leq \epsilon (\| \overline \partial u \| ^2 + \| \overline \partial^*u\| ^2) + C_\epsilon \| u\| _{-1}^2 \] for all \(u\in \mathcal{C}^\infty _{(0,q)} (\overline \Omega ) \cap {\text{dom}} (\overline \partial^* ).\) Then the \(\overline \partial\)- Neumann operator \(N_q\) on \((0,q)\) forms is exactly regular in Sobolev norms, that is \(\| N_q u\| _s \leq C_s \| u\| _s,\) for \(s\geq 0\) and all \(u\in W_{(0,q)}^s (\Omega ).\)
In this way a theory of global regularity of the \(\overline \partial\)- Neumann operator is developed which unifies the two principal approaches to date, namely the one via compactness due to Kohn-Nirenberg and Catlin and the one via plurisubharmonic defining functions and/or vector fields that commute approximately with \(\overline \partial\) due to Boas and Straube. In the final section, the author gives some interesting estimates of operators arising from the regularized \(\overline \partial\)- Neumann problem.

MSC:

32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
Full Text: DOI

References:

[1] Barrett, David E., Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math., 168, 1-10 (1992) · Zbl 0779.32013
[2] Bedford, Eric; Fornæss, John Erik, Domains with pseudoconvex neighborhood systems, Invent. Math., 47, 1-27 (1978) · Zbl 0399.32013
[3] Boas, Harold P.; Straube, Emil J., Equivalence of regularity for the Bergman projection and the \(\overline{\partial} \)-Neumann operator, Manuscripta Math., 67, 25-33 (1990) · Zbl 0695.32011
[4] Boas, Harold P.; Straube, Emil J., Sobolev estimates for the \(\overline{\partial} \)-Neumann operator on domains in \(C^n\) admitting a defining function that is plurisubharmonic on the boundary, Math. Z., 206, 1, 81-88 (1991) · Zbl 0696.32008
[5] Boas, Harold P.; Straube, Emil J., The Bergman projection on Hartogs domains in \(C^2\), Trans. Amer. Math. Soc., 331, 529-540 (1992) · Zbl 0766.32024
[6] Boas, Harold P.; Straube, Emil J., De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the \(\overline{\partial} \)-Neumann problem, J. Geom. Anal., 3, 3, 225-235 (1993) · Zbl 0792.32013
[7] Boas, Harold P.; Straube, Emil J., Global regularity of the \(\overline{\partial} \)-Neumann problem: A survey of the \(L^2\)-Sobolev theory, (Schneider, M.; Siu, Y.-T., Several Complex Variables (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 79-111 · Zbl 0967.32033
[8] Catlin, David, Global regularity of the \(\overline{\partial} \)-Neumann problem, (Siu, Y.-T., Complex Analysis of Several Variables. Complex Analysis of Several Variables, Proc. Sympos. Pure Math., vol. 41 (1984), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 39-49 · Zbl 0578.32031
[9] Chen, So-Chin, Global regularity of the \(\overline{\partial} \)-Neumann problem on circular domains, Math. Ann., 285, 1-12 (1989) · Zbl 0662.32016
[10] Chen, So-Chin; Shaw, Mei-Chi, Partial Differential Equations in Several Complex Variables, Stud. Adv. Math., vol. 19 (2001), Amer. Math. Soc./International Press · Zbl 0963.32001
[11] Christ, Michael, Global \(C^\infty\) irregularity of the \(\overline{\partial} \)-Neumann problem for worm domains, J. Amer. Math. Soc., 9, 4, 1171-1185 (1996) · Zbl 0945.32022
[12] Christ, Michael, Remarks on global irregularity in the \(\overline{\partial} \)-Neumann problem, (Schneider, M.; Siu, Y.-T., Several Complex Variables (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 161-198 · Zbl 0959.32041
[13] D’Angelo, John P., Several Complex Variables and the Geometry of Real Hypersurfaces, Stud. Adv. Math. (1993), CRC Press: CRC Press Boca Raton, FL · Zbl 0854.32001
[14] D’Angelo, John P.; Kohn, Joseph J., Subelliptic estimates and finite type, (Schneider, M.; Siu, Y.-T., Several Complex Variables (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 199-232 · Zbl 0969.32016
[15] Derridj, M.; Tartakoff, D. S., On the global real analyticity of solutions to the \(\overline{\partial} \)-Neumann problem, Comm. Partial Differential Equations, 1, 401-435 (1976) · Zbl 0441.35049
[16] Diederich, K.; Fornæss, J. E., Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39, 129-141 (1977) · Zbl 0353.32025
[17] Folland, G. B.; Kohn, J. J., The Neumann Problem for the Cauchy-Riemann Complex, Ann. of Math. Stud., vol. 75 (1972), Princeton Univ. Press · Zbl 0247.35093
[18] Franc Forstnerič, Christine Laurent-Thiébaut, Stein compacts in Levi-flat hypersurfaces, Trans. Amer. Math. Soc., in press; Franc Forstnerič, Christine Laurent-Thiébaut, Stein compacts in Levi-flat hypersurfaces, Trans. Amer. Math. Soc., in press · Zbl 1141.32003
[19] Siqi Fu, Hearing the type of a domain in \(\mathbb{C}^2\overline{\partial} \); Siqi Fu, Hearing the type of a domain in \(\mathbb{C}^2\overline{\partial} \)
[20] Fu, Siqi; Straube, Emil J., Compactness of the \(\overline{\partial} \)-Neumann problem on convex domains, J. Funct. Anal., 159, 629-641 (1998) · Zbl 0959.32042
[21] Fu, Siqi; Straube, Emil J., Compactness in the \(\overline{\partial} \)-Neumann problem, (McNeal, J., Complex Analysis and Geometry. Complex Analysis and Geometry, Ohio State Univ. Math. Res. Inst. Publ., vol. 9 (2001), de Gruyter: de Gruyter Berlin), 141-160 · Zbl 1011.32025
[22] P.S. Harrington, Compactness and subellipticity for the \(\overline{\partial} \); P.S. Harrington, Compactness and subellipticity for the \(\overline{\partial} \)
[23] Hefer, Torsten; Lieb, Ingo, On the compactness of the \(\overline{\partial} \)-Neumann operator, Ann. Fac. Sci. Toulouse Math. (6), 9, 3, 415-432 (2000) · Zbl 1017.32025
[24] Herbig, Anne-Katrin; McNeal, Jeffery D., Regularity of the Bergman projection on forms and plurisubharmonicity conditions, Math. Ann., 336, 2, 335-359 (2006) · Zbl 1117.32023
[25] Kohn, J. J., Global regularity for \(\overline{\partial}\) on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181, 273-292 (1973) · Zbl 0276.35071
[26] Kohn, J. J., Quantitative estimates for global regularity, (Komatsu, G.; Kuranishi, M., Analysis and Geometry in Several Complex Variables. Analysis and Geometry in Several Complex Variables, Trends Math. (1999), Birkhäuser: Birkhäuser Basel) · Zbl 0941.32034
[27] Kohn, J. J., Superlogarithmic estimates on pseudoconvex domains and CR manifolds, Ann. of Math., 156, 213-248 (2002) · Zbl 1037.32032
[28] Kohn, J. J.; Nirenberg, L., Non-coercive boundary value problems, Comm. Pure Appl. Math., 18, 443-492 (1965) · Zbl 0125.33302
[29] Lieb, Ingo; Michel, Joachim, The Cauchy-Riemann Complex. Integral Formulae and Neumann Problem, Aspects Math., vol. E34 (2002), Vieweg · Zbl 0994.32002
[30] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, vol. I, Grundlehren Math. Wiss., vol. 181 (1972), Springer · Zbl 0223.35039
[31] McNeal, Jeffery D., A sufficient condition for compactness of the \(\overline{\partial} \)-Neumann operator, J. Funct. Anal., 195, 1, 190-205 (2002) · Zbl 1023.32029
[32] Jeffery D. McNeal, private communication; Jeffery D. McNeal, private communication
[33] McNeal, Jeffery D., \(L^2\) estimates on twisted Cauchy-Riemann complexes, (150 Years of Mathematics at Washington University in St. Louis. 150 Years of Mathematics at Washington University in St. Louis, Contemp. Math., vol. 395 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 83-103 · Zbl 1106.32027
[34] Sibony, Nessim, Une classe de domaines pseudoconvexes, Duke Math. J., 55, 2, 299-319 (1987) · Zbl 0622.32016
[35] Sibony, Nessim, Some aspects of weakly pseudoconvex domains, (Bedford, E.; D’Angelo, J.; Greene, R.; Krantz, S., Several Complex Variables and Complex Geometry, Part 1. Several Complex Variables and Complex Geometry, Part 1, Proc. Sympos. Pure Math., vol. 52 (1991), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 199-231 · Zbl 0747.32006
[36] Straube, Emil J., Good Stein neighborhood bases and regularity of the \(\overline{\partial} \)-Neumann problem, Illinois J. Math., 45, 865-871 (2001) · Zbl 0997.32038
[37] Straube, Emil J., Geometric conditions which imply compactness of the \(\overline{\partial} \)-Neumann operator, Ann. Inst. Fourier (Grenoble), 54, 3, 699-710 (2004) · Zbl 1061.32028
[38] Straube, Emil J.; Sucheston, Marcel K., Plurisubharmonic defining functions, good vector fields, and exactness of a certain one form, Monatsh. Math., 136, 249-258 (2002) · Zbl 1008.32023
[39] Straube, Emil J.; Sucheston, Marcel K., Levi foliations in pseudoconvex boundaries and vector fields that commute approximately with \(\overline{\partial} \), Trans. Amer. Math. Soc., 355, 1, 143-154 (2003) · Zbl 1016.32019
[40] Takegoshi, Kensho, A new method to introduce a priori estimates for the \(\overline{\partial} \)-Neumann problem, (Diederich, K., Complex Analysis. Complex Analysis, Aspects Math., vol. E17 (1991), Vieweg), 310-314 · Zbl 0731.32007
[41] Taylor, Michael E., Partial Differential Equations, II: Qualitative Studies of Linear Equations, Appl. Math. Sci., vol. 116 (1996), Springer · Zbl 0869.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.