×

High-accuracy scaling exponents in the local potential approximation. (English) Zbl 1150.82002

Summary: We test equivalences between different realisations of Wilson’s renormalisation group by computing the leading, subleading, and anti-symmetric corrections-to-scaling exponents, and the full fixed point potential for the Ising universality class to leading order in a derivative expansion. We discuss our methods with a special emphasis on accuracy and reliability. We establish numerical equivalence of Wilson-Polchinski flows and optimised renormalisation group flows with an unprecedented accuracy in the scaling exponents. Our results are contrasted with high-accuracy findings from Dyson’s hierarchical model, where a tiny but systematic difference in all scaling exponents is established. Further applications for our numerical methods are briefly indicated.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics

References:

[1] Pelissetto, A.; Vicari, E., Phys. Rep., 368, 549 (2002) · Zbl 0997.82019
[2] Polonyi, J., Central Eur. J. Phys., 1, 1 (2003)
[3] Pawlowski, J. M., For a recent overview of advanced functional RG methods, see
[4] Litim, D. F., JHEP, 0111, 059 (2001)
[5] Wilson, K. G.; Kogut, J. B., Phys. Rep., 12, 75 (1974)
[6] Polchinski, J., Nucl. Phys. B, 231, 269 (1984)
[7] Wetterich, C., Phys. Lett. B, 301, 90 (1993)
[8] Litim, D. F., Phys. Lett. B, 486, 92 (2000)
[9] Dyson, F. J., Commun. Math. Phys., 12, 91 (1969) · Zbl 1306.47082
[10] Baker, G., Phys. Rev. B, 5, 2622 (1972)
[11] Felder, G., Commun. Math. Phys., 111, 101 (1987) · Zbl 0632.35068
[12] Litim, D. F., Int. J. Mod. Phys. A, 16, 2081 (2001) · Zbl 0980.81037
[13] Litim, D. F., JHEP, 0507, 005 (2005)
[14] Morris, T. R., JHEP, 0507, 027 (2005)
[15] Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B., Phys. Rev. D, 73, 047701 (2006)
[16] Litim, D. F., Nucl. Phys. B, 631, 128 (2002) · Zbl 0995.81074
[17] Litim, D. F.; Tetradis, N.
[18] Alford, M. G., Phys. Lett. B, 336, 237 (1994)
[19] Aoki, K. I.; Morikawa, K. I.; Souma, W.; Sumi, J. I.; Terao, H., Prog. Theor. Phys., 99, 451 (1998)
[20] Morris, T. R., Phys. Lett. B, 334, 355 (1994)
[21] Boisseau, B.; Forgacs, P.; Giacomini, H.
[22] C. Bervillier, in preparation; C. Bervillier, in preparation
[23] Tsypin, M. M., Nucl. Phys. B, 636, 601 (2002) · Zbl 0996.82011
[24] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., (Numerical Recipes—The Art of Scientific Computing (1992), Cambridge Univ. Press) · Zbl 1132.65001
[25] Comellas, J., Nucl. Phys. B, 509, 662 (1998) · Zbl 0956.81048
[26] Bervillier, C., Phys. Lett. A, 332, 93 (2004) · Zbl 1123.82331
[27] Litim, D. F.; Pawlowski, J. M.; Vergara, L.
[28] Ball, R. D.; Haagensen, P. E.; Latorre, J. I.; Moreno, E., Phys. Lett. B, 347, 80 (1995)
[29] Comellas, J.; Travesset, A., Nucl. Phys. B, 498, 539 (1997)
[30] K. Wilson, private communication, in: [10]; K. Wilson, private communication, in: [10]
[31] Pinn, K.; Pordt, A.; Wieczerkowski, C., J. Stat. Phys., 77, 977 (1994) · Zbl 0838.60100
[32] Godina, J. J.; Meurice, Y.; Oktay, M. B., Phys. Rev. D, 59, 096002 (1999)
[33] Gottker-Schnetmann, J.
[34] Godina, J. J.; Meurice, Y.; Oktay, M. B., Phys. Rev. D, 57, 6581 (1998)
[35] Godina, J. J.; Meurice, Y.; Oktay, M. B.; Niermann, S., Phys. Rev. D, 57, 6326 (1998)
[36] Meurice, Y.; Ordaz, G., J. Phys. A, 29, L635 (1996) · Zbl 0900.82037
[37] Meurice, Y.
[38] Liao, S. B.; Polonyi, J.; Strickland, M., Nucl. Phys. B, 567, 493 (2000) · Zbl 0951.81022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.