×

Efficient semiparametric estimation of the periods in a superposition of periodic functions with unknown shape. (English) Zbl 1150.62047

Let us assume that we have \(n\) observations of a sampled signal corrupted by Gaussian white noise, \(X(j)=s_0(jt_{n})+\varepsilon(j)\); \(1\leq j\leq n\), where \(s_0\) is an unknown real function, \(\varepsilon(j)\) are independent centred Gaussian random variables of unknown variance, and \(t_{n}\) is the sampling period. The authors consider the situation where the signal \(s_0\) can be decomposed into a sum of unknown periodic signals and are interested in the estimation of the periods of the individual periodic components. In the case of a single periodic function a consistent and asymptotically efficient semiparameteric estimator of the period is proposed. Then the authors study the case of a sum of two periodic functions of unknown shape with different periods and propose semiparamepric estimators of their periods that are consistent and asymptotically Gaussian.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference

Software:

partsm
Full Text: DOI

References:

[1] DOI: 10.1111/1467-9892.00246 · Zbl 0984.62062 · doi:10.1111/1467-9892.00246
[2] Bentarzi M., Journal of Time Series Analysis 15 pp 263– (1994)
[3] Bentarzi M., Econometric Theory 12 pp 88– (1996)
[4] Bentarzi M., Journal of Applied Probability 35 pp 48– (1998) · Zbl 0923.62089 · doi:10.1017/S0021900200014662
[5] Franses P., Periodicity and Stochastic Trends in Economic Time Series (1996) · Zbl 0868.62088
[6] Golubev G. K., Problemy Peredachi Informatsii 24 pp 38– (1988)
[7] DOI: 10.1093/biomet/87.3.545 · doi:10.1093/biomet/87.3.545
[8] Hallin M., Statistical Modeling and Analysis for Complex Data Problems pp 281– (2005)
[9] DOI: 10.2307/3212772 · Zbl 0271.62122 · doi:10.2307/3212772
[10] Kavalieris L., Journal of Time Series Analysis 15 pp 613– (1994)
[11] Kay S. M., IEEE Transactions on ASSP 37 pp 1987– (1989)
[12] Kootsookos P. J., A review of the frequency estimation and tracking problems. Frequency estimation and tracking project (1999)
[13] Kundu D., Statistical Computing: Existing Methods and Recent Developments pp 371– (2004)
[14] DOI: 10.1109/TSP.2005.849156 · Zbl 1370.94164 · doi:10.1109/TSP.2005.849156
[15] Le Cam L., Asymptotic Methods in Statistical Decision Theory (1986) · Zbl 0605.62002
[16] Levy-Leduc C., Estimation semi-parametrique de la frequence de fonctions periodiques dans divers modeles statistiques: theorie et pratique (2004)
[17] DOI: 10.1016/S0378-3758(00)00193-2 · Zbl 0970.62031 · doi:10.1016/S0378-3758(00)00193-2
[18] Pisarenko V. F., Geophysical Journal of the Royal Astronomical Society 10 pp 347– (1973) · doi:10.1111/j.1365-246X.1973.tb03424.x
[19] Prenat M., Proceedings of the Physics in Signal and Image Processing (PSIP2001) Conference. Marseille, France (2001)
[20] DOI: 10.2307/2337018 · doi:10.2307/2337018
[21] Quinn B. G., The Estimation and Tracking of Frequency. Cambridge Series in Statistical and Probabilistic Mathematics (2001) · Zbl 0969.62060 · doi:10.1017/CBO9780511609602
[22] DOI: 10.2307/2336896 · doi:10.2307/2336896
[23] DOI: 10.1109/TAP.1986.1143830 · doi:10.1109/TAP.1986.1143830
[24] van der Vaart A. W., Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (1998) · Zbl 0910.62001
[25] DOI: 10.2307/2334314 · doi:10.2307/2334314
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.