×

The high-conductance state of cortical networks. (English) Zbl 1149.92307

Summary: We studied the dynamics of large networks of spiking neurons with conductance-based (nonlinear) synapses and compared them to networks with current-based (linear) synapses. For systems with sparse and inhibition-dominated recurrent connectivity, weak external inputs induced asynchronous irregular firing at low rates. Membrane potentials fluctuated a few millivolts below the threshold, and membrane conductances were increased by a factor 2 to 5 with respect to the resting state. This combination of parameters characterizes the ongoing spiking activity typically recorded in the cortex in vivo.
Many aspects of the asynchronous irregular state in conductance-based networks could be sufficiently well characterized with a simple numerical mean field approach. In particular, it correctly predicted an intriguing property of conductance-based networks that does not appear to be shared by current-based models: they exhibit states of low-rate asynchronous irregular activity that persist for some period of time even in the absence of external inputs and without cortical pacemakers. Simulations of larger networks (up to 350,000 neurons) demonstrated that the survival time of self-sustained activity increases exponentially with network size.

MSC:

92C20 Neural biology
92C05 Biophysics
Full Text: DOI

References:

[1] DOI: 10.1088/0954-898X/1/1/002 · doi:10.1088/0954-898X/1/1/002
[2] DOI: 10.1016/0167-2789(94)90278-X · Zbl 0858.92010 · doi:10.1016/0167-2789(94)90278-X
[3] DOI: 10.1093/cercor/7.3.237 · doi:10.1093/cercor/7.3.237
[4] DOI: 10.1126/science.273.5283.1868 · doi:10.1126/science.273.5283.1868
[5] DOI: 10.1073/pnas.88.24.11569 · doi:10.1073/pnas.88.24.11569
[6] DOI: 10.1162/089976600300015934 · doi:10.1162/089976600300015934
[7] DOI: 10.1113/jphysiol.2002.018465 · doi:10.1113/jphysiol.2002.018465
[8] DOI: 10.1023/A:1008925309027 · Zbl 1036.92008 · doi:10.1023/A:1008925309027
[9] DOI: 10.1093/cercor/bhg096 · doi:10.1093/cercor/bhg096
[10] DOI: 10.1152/jn.01095.2002 · doi:10.1152/jn.01095.2002
[11] DOI: 10.1098/rspb.1979.0002 · doi:10.1098/rspb.1979.0002
[12] DOI: 10.1016/S0896-6273(02)00820-6 · doi:10.1016/S0896-6273(02)00820-6
[13] Chiu C., J. Neurosci. 21 pp 8906– (2001)
[14] DOI: 10.1093/cercor/10.9.910 · doi:10.1093/cercor/10.9.910
[15] DOI: 10.1016/0166-2236(90)90185-D · doi:10.1016/0166-2236(90)90185-D
[16] DOI: 10.1103/PhysRevLett.92.074103 · doi:10.1103/PhysRevLett.92.074103
[17] DOI: 10.1038/nrn1198 · doi:10.1038/nrn1198
[18] DOI: 10.1038/990101 · doi:10.1038/990101
[19] Fuster J. M., J. Neurophysiol. 36 (1) pp 61– (1973)
[20] DOI: 10.1016/S0006-3495(64)86768-0 · doi:10.1016/S0006-3495(64)86768-0
[21] DOI: 10.1016/0896-6273(95)90304-6 · doi:10.1016/0896-6273(95)90304-6
[22] DOI: 10.1162/089976600300015529 · doi:10.1162/089976600300015529
[23] DOI: 10.1162/089976698300017845 · doi:10.1162/089976698300017845
[24] DOI: 10.1016/j.neuron.2005.06.016 · doi:10.1016/j.neuron.2005.06.016
[25] DOI: 10.1038/nn893 · doi:10.1038/nn893
[26] DOI: 10.1162/089976603321043702 · Zbl 1026.92011 · doi:10.1162/089976603321043702
[27] DOI: 10.1523/JNEUROSCI.3349-03.2004 · doi:10.1523/JNEUROSCI.3349-03.2004
[28] Latham P. E., J. Neurophysiol. 83 pp 808– (2000)
[29] Latham P. E., J. Neurophysiol. 83 pp 828– (2000)
[30] Leger J., J. Neurophysiol. 1 (93) pp 281– (2005)
[31] Maex R., J. Neurosci. 23 (33) pp 10503– (2003)
[32] DOI: 10.1038/nrn1519 · doi:10.1038/nrn1519
[33] Matsumura M., J. Neurosci. 16 (23) pp 7757– (1996)
[34] McCormick D. A., J. Neurophysiol. 54 (4) pp 782– (1985)
[35] DOI: 10.1093/cercor/bhg104 · doi:10.1093/cercor/bhg104
[36] DOI: 10.1023/B:JCNS.0000014108.03012.81 · doi:10.1023/B:JCNS.0000014108.03012.81
[37] DOI: 10.1007/s00422-002-0384-4 · Zbl 1083.92006 · doi:10.1007/s00422-002-0384-4
[38] DOI: 10.1137/0150098 · Zbl 0712.92006 · doi:10.1137/0150098
[39] DOI: 10.1162/0899766054026648 · Zbl 1112.68494 · doi:10.1162/0899766054026648
[40] Nawrot M. P., European Journal of Neuroscience 12 pp 506– (2000)
[41] DOI: 10.1016/0306-4522(95)00405-X · doi:10.1016/0306-4522(95)00405-X
[42] DOI: 10.1162/neco.1992.4.4.518 · doi:10.1162/neco.1992.4.4.518
[43] DOI: 10.1152/jn.00293.2003 · doi:10.1152/jn.00293.2003
[44] DOI: 10.1007/s004220050570 · Zbl 0958.92004 · doi:10.1007/s004220050570
[45] DOI: 10.1103/PhysRevLett.94.238103 · doi:10.1103/PhysRevLett.94.238103
[46] DOI: 10.1162/089976603321891756 · Zbl 1056.92012 · doi:10.1162/089976603321891756
[47] Shadlen M. N., J. Neurosci. 18 (10) pp 3870– (1998)
[48] DOI: 10.1023/A:1020158106603 · doi:10.1023/A:1020158106603
[49] DOI: 10.1038/nature01616 · doi:10.1038/nature01616
[50] Softky W. R., J. Neurosci. 13 (1) pp 334– (1993)
[51] DOI: 10.1162/089976601750399281 · Zbl 0988.92009 · doi:10.1162/089976601750399281
[52] DOI: 10.1111/j.1469-7793.1998.351bq.x · doi:10.1111/j.1469-7793.1998.351bq.x
[53] DOI: 10.1093/cercor/10.12.1185 · doi:10.1093/cercor/10.12.1185
[54] DOI: 10.1162/089976698300017214 · doi:10.1162/089976698300017214
[55] DOI: 10.1523/JNEUROSCI.3508-05.2005 · doi:10.1523/JNEUROSCI.3508-05.2005
[56] DOI: 10.1146/annurev.neuro.28.061604.135637 · doi:10.1146/annurev.neuro.28.061604.135637
[57] DOI: 10.1126/science.1067903 · doi:10.1126/science.1067903
[58] Williams S. R., J. Neurosci. 23 (19) pp 7358– (2003)
[59] DOI: 10.1007/BF00288786 · Zbl 0281.92003 · doi:10.1007/BF00288786
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.