×

\(SO(3)\) gauge symmetry and nearly tri-bimaximal neutrino mixing. (English) Zbl 1149.81383

Summary: In this note I mainly focus on the neutrino physics part in my talk and report the most recent progress made by Y. L. Wu [Phys. Rev. D 76, 1113009 (2008); arXiv:0708.0867]. It is seen that the Majorana features of neutrinos and \(SO(3)\) gauge flavor symmetry can simultaneously explain the smallness of neutrino masses and nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The mixing angle \(\theta_{13}\) and CP-violating phase are in general nonzero and testable experimentally at the allowed sensitivity. The model also predicts the existence of vector-like Majorana neutrinos and charged leptons as well as new Higgs bosons, some of them can be light and explored at the LHC and ILC.

MSC:

81V15 Weak interaction in quantum theory
83F05 Relativistic cosmology
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] DOI: 10.1103/PhysRevD.77.113009 · doi:10.1103/PhysRevD.77.113009
[2] DOI: 10.1103/PhysRevC.72.055502 · doi:10.1103/PhysRevC.72.055502
[3] Eguci K., Phys. Rev. Lett. 94 pp 081801–
[4] DOI: 10.1103/PhysRevLett.94.081802 · doi:10.1103/PhysRevLett.94.081802
[5] Ashie Y., Phys.Rev. D 71
[6] Altmann M., Phys. Lett. 616 pp 174– · doi:10.1016/j.physletb.2005.04.068
[7] Ambrosio M., Eur. Phys. J. pp 323–
[8] Sanchez M., Phys. Rev. 68 pp 113004–
[9] Apollonio M., Eur. Phys. J. 27 pp 331– · doi:10.1140/epjc/s2002-01127-9
[10] Yao W.-M., Journal of Phys. 33 pp 1–
[11] DOI: 10.1016/j.ppnp.2005.08.002 · doi:10.1016/j.ppnp.2005.08.002
[12] Maltoni M., Phys. Rev. 68 pp 113010–
[13] DOI: 10.1146/annurev.nucl.56.080805.140534 · doi:10.1146/annurev.nucl.56.080805.140534
[14] Harrison P. F., Phys. Lett. 530 pp 167– · doi:10.1016/S0370-2693(02)01336-9
[15] Xing Z.-Z., Phys. Lett. 533 pp 85– · doi:10.1016/S0370-2693(02)01649-0
[16] Harrison P. F., Phys. Lett. 535 pp 163– · doi:10.1016/S0370-2693(02)01753-7
[17] Harrison P. F., Phys. Lett. 557 pp 76– · doi:10.1016/S0370-2693(03)00183-7
[18] He X. G., Phys. Lett. 560 pp 87–
[19] Wu Y. L., Phys.Rev. 60 pp 073010–
[20] DOI: 10.1016/S0920-5632(00)00506-5 · doi:10.1016/S0920-5632(00)00506-5
[21] Wu Y. L., Eur.Phys.J. 10 pp 491– · doi:10.1007/s100529900136
[22] DOI: 10.1088/0954-3899/26/8/303 · doi:10.1088/0954-3899/26/8/303
[23] Wu Y. L., Science in China 43 pp 988– · Zbl 0996.81526 · doi:10.1007/BF02879805
[24] Carone C., Phys. Lett. 420 pp 83– · doi:10.1016/S0370-2693(97)01498-6
[25] Hu B., Phys.Rev. 75 pp 113003–
[26] Hall L. J., Phys. Rev. 48 pp 979–
[27] DOI: 10.1103/PhysRevLett.73.1762 · doi:10.1103/PhysRevLett.73.1762
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.