×

Efficient low dissipative high order schemes for multiscale MHD flows. II: Minimization of \(\nabla\cdot B\) numerical error. (English) Zbl 1149.76648

Summary: An adaptive numerical dissipation control in a class of high order filter methods for compressible MHD equations is systematically discussed. The filter schemes consist of a divergence-free preserving high order spatial base scheme with a filter approach which can be divergence-free preserving depending on the type of filter operator being used, the method of applying the filter step, and the type of flow problem to be considered. Some of these filter variants provide a natural and efficient way for the minimization of the divergence of the magnetic field \((\nabla\cdot B)\) numerical error in the sense that commonly used divergence cleaning is not required. Numerical experiments presented emphasize the performance of the \(\nabla\cdot B\) numerical error. Many levels of grid refinement and detailed comparison of the filter methods with several commonly used compressible MHD shock-capturing schemes are illustrated

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Brackbill J.U., Barnes D.C. (1980). Note: The effect of nonzero B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys 35:426–430 · Zbl 0429.76079 · doi:10.1016/0021-9991(80)90079-0
[2] Brio M., Wu C.C. (1998). An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys 75:400–422 · Zbl 0637.76125 · doi:10.1016/0021-9991(88)90120-9
[3] Cargo P., Gallice G. (1997). Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys 136:446–466 · Zbl 0919.76053 · doi:10.1006/jcph.1997.5773
[4] Dedner A., Kemm F., Kröner D., Munz C.-D., Schnitzer T., Wesenberg M. (2002). Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys 175:645–673 · Zbl 1059.76040 · doi:10.1006/jcph.2001.6961
[5] Dai W., Woodward P.R. (1998). A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys 142:331–369 · Zbl 0932.76048 · doi:10.1006/jcph.1998.5944
[6] Dai W., Woodward P.R. (1998). On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494:317–335 · doi:10.1086/305176
[7] De Sterck H. (2001). Multi-dimensional upwind constrained transport on unstructured grids for shallow water magnetohydrodynamics. AIAA Paper 2001–2623
[8] Evans C.R., Hawley J.F. (1988). Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J 332:659–677 · doi:10.1086/166684
[9] Gallice, G. (1997). Systéme dÉuler-Poisson, Magnétohydrodynamique et Schemeas de Roe:PhD Thesis, L’Université Bordeaux I.
[10] Gallice, G. Resolution numerique des equations de la magnetohydrodynamique ideale bidimensionnelle. Actes du workshop Méthodes Numériques pour la M.H.D., CIRM (Luminy), December 4–5, 1995
[11] Godunov S.K. (1972). Symmetric form of the equations of magnetohydrodynamics. Num. Methods Mech Continuum Medium 13(1):26–34
[12] Harten A., Hyman J.M. (1983). A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws. J. Comput. Phys 50:235–269 · Zbl 0565.65049 · doi:10.1016/0021-9991(83)90066-9
[13] Jiang G.-S., Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys 126:202–228 · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[14] Nordstrom J., Carpenter M.H. (1999). Boundary and interface conditions for high-order finite-difference schemes applied to the Euler and Navier–Stokes equations. J. Comput. Phys 148:621–645 · Zbl 0921.76111 · doi:10.1006/jcph.1998.6133
[15] Olsson P. (1995). Summation by parts, projections and stability. I. Math. Comp 64:1035–1065 · Zbl 0828.65111 · doi:10.1090/S0025-5718-1995-1297474-X
[16] Olsson, P. (1995). Summation by parts, projections and stability. III. RIACS Technical Report 95-06, NASA Ames Research Center. · Zbl 0848.65064
[17] Olsson P., and Oliger, J. (1994). Energy and maximum norm estimates for nonlinear conservation laws. RIACS Technical Report 94.01.
[18] Orszag S.A., Tang C.M. (1979). Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech 90:129–143 · doi:10.1017/S002211207900210X
[19] Powell, K. G. (1994). An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE-Report 94-24, NASA Langley Research Center, April 1994.
[20] Powell K.G., Roe P.L., Linde T.J., Gombosi T.I., De Zeeuw D.L. (1999). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys 154:284–309 · Zbl 0952.76045 · doi:10.1006/jcph.1999.6299
[21] Sjögreen B. (1995). High order centered difference methods for the compressible Navier-Stokes equations. J. Comput. Phys 117:67–78 · Zbl 0817.76047 · doi:10.1006/jcph.1995.1045
[22] Sjögreen B., Yee H.C. (2004). Multiresolution wavelet based adaptive numerical dissipation control for shock-turbulence computation. RIACS Technical Report TR01.01, NASA Ames research center (Oct 2000); also. J. Sci. Comput. 20:211–255 · Zbl 1106.76411 · doi:10.1023/B:JOMP.0000008721.30071.e4
[23] Sjögreen, B., and Yee, H. C. (2003). Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows. RIACS Technical Report TR01.06, April, 2001, NASA Ames research center; AIAA 2001-2599. In Proceedings of the 15th AIAA CFD Conference, June 11-14, 2001, Anaheim, CA., also, J. Comput. Phys 185:1–26.
[24] Sjögreen, B., and Yee, H. C. (2003). Low dissipative high order numerical simulations of supersonic reactive flows. RIACS Technical Report TR01-017, NASA Ames Research Center (May 2001); In Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, September 4-7, 2001; also, Int. J. Num. Meth. fluids 43:1221–1238. · Zbl 1032.76643
[25] Sjögreen, B., and Yee, H. C. (2002). Analysis of high order difference methods for multiscale complex compressible flows. In Proceedings of the 9th International Conference on Hyperbolic Problems, March 25–29, Pasadena, CA.
[26] Sjögreen, B., and Yee, H. C. (2003). Efficient low dissipative high order schemes for multiscale MHD flows, I: basic theory. AIAA 2003-4118. In Proceedings of the 16th AIAA/CFD Conference, June 23–26, Orlando, Fl.
[27] Sjögreen, B., and Yee, H. C. (2005). Efficient low dissipative high order schemes for multiscale MHD flows, III: curvilinear grid simulations. RIACS Technical Report, NASA Ames Research Center.
[28] Tóth G. (2000). The div B=0 constraint in shock-capturing magnetohydrodynamic codes. J. Comput. Phys 161:605–652 · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[29] Vinokur, M. (1996). A rigorous derivation of the MHD equations based only on Faraday’s and Ampére’s Laws. Presentation at LANL MHD Workshop on B Cleaning, August.
[30] Vinokur, M., and Yee, H. C. (2002). Extension of efficient low dissipative high order schemes for 3-D curvilinear moving grids. NASA TM 209598, June 2000; also, In Frontiers of Computational Fluid Dynamics, World Scientific, Caughey, D. A, and Hafez, M.M.(eds), 129–164. · Zbl 1047.76559
[31] Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods. VKI Lecture Series 1989–04, March 6–10, also NASA TM-101088, February 1989.
[32] Yee H.C., Sandham N.D., Djomehri M.J. (1999). Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys 150:199–238 · Zbl 0936.76060 · doi:10.1006/jcph.1998.6177
[33] Yee H.C., Vinokur M., Djomehri M.J. (2000). Entropy splitting and numerical dissipation. J. Comput. Phys 162:33–81 · Zbl 0987.65086 · doi:10.1006/jcph.2000.6517
[34] Yee, H. C., and Sjögreen, B. (2002). Designing adaptive low dissipative high order schemes for long-time integrations. In Turbulent Flow Computation, Drikakis, D., and Geurts, B., Kluwer Academic Publisher; also RIACS Technical Report TR01-28, December 2001.
[35] Yee, H. C., and Sjögreen, B. (2003). Divergence free high order filter methods for the compressible MHD equations. In Proceedings of the International Conference on High Performance Scientific Computing, March 10–14, Hanoi, Vietnam.
[36] Yee, H. C., and Sjögreen, B. (2003). Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of . B numerical error. RIACS Technical Report TR03.10, NASA Ames Research Center. · Zbl 1149.76648
[37] Yee, H. C., and Sjögreen, B. (2004). Adaptive numerical dissipation control in high order schemes for multi-D non-ideal MHD. In Proceedings of the ICCFD3, July 12–16, Toronto, Canada.
[38] Yee H.C., Sjögreen B. (2004). Nonlinear filtering and limiting in high order methods for ideal and Non-ideal MHD. In Proceedings of the ICOSAHOM04, June 21–25. Brown University, Providence,RI, · Zbl 1115.76084
[39] Yee K.S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat 14:302–307 · Zbl 1155.78304 · doi:10.1109/TAP.1966.1138693
[40] Zachary A.L., Malagoli A., Colella P. (1994). A higher-order Godunov method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput 15:263–284 · Zbl 0797.76063 · doi:10.1137/0915019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.