×

Synchronization in linearly coupled dynamical networks with distributed time delays. (English) Zbl 1149.34346

Summary: We investigate the global exponential synchronization of linearly coupled dynamical networks with time delays. The time delay considered is of the distributed type and the outer-coupling matrix is not assumed to be symmetric. Employing the Lyapunov functional and matrix inequality techniques, we propose a sufficient condition for the occurrence of global exponential synchronization. Two illustrative examples, the coupled Chua’s circuits and the coupled Hindmarsh-Rose neurons, and their numerical simulation results are presented to demonstrate the theoretical analyses.

MSC:

34K25 Asymptotic theory of functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI

References:

[1] DOI: 10.1016/j.physd.2004.03.012 · Zbl 1098.82622 · doi:10.1016/j.physd.2004.03.012
[2] DOI: 10.1142/S0218127405014143 · Zbl 1107.34047 · doi:10.1142/S0218127405014143
[3] DOI: 10.1063/1.2146180 · Zbl 1144.37318 · doi:10.1063/1.2146180
[4] DOI: 10.1016/j.physleta.2005.12.092 · doi:10.1016/j.physleta.2005.12.092
[5] DOI: 10.1142/S0218127404010655 · Zbl 1077.37506 · doi:10.1142/S0218127404010655
[6] DOI: 10.1016/0167-2789(94)90043-4 · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[7] DOI: 10.1017/CBO9780511810817 · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[8] DOI: 10.1088/0951-7715/19/12/004 · Zbl 1111.37022 · doi:10.1088/0951-7715/19/12/004
[9] DOI: 10.1103/PhysRevLett.74.5028 · doi:10.1103/PhysRevLett.74.5028
[10] DOI: 10.1016/j.physa.2004.05.058 · doi:10.1016/j.physa.2004.05.058
[11] DOI: 10.1016/j.chaos.2005.08.169 · Zbl 1142.34374 · doi:10.1016/j.chaos.2005.08.169
[12] DOI: 10.1142/S0218127407019706 · Zbl 1152.93489 · doi:10.1142/S0218127407019706
[13] DOI: 10.1016/j.physd.2005.11.009 · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[14] DOI: 10.1016/j.physd.2006.07.020 · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[15] DOI: 10.1137/S0036139900368807 · Zbl 0984.34027 · doi:10.1137/S0036139900368807
[16] DOI: 10.1137/0150098 · Zbl 0712.92006 · doi:10.1137/0150098
[17] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[18] DOI: 10.1103/PhysRevA.44.2374 · doi:10.1103/PhysRevA.44.2374
[19] DOI: 10.1109/81.904879 · Zbl 0994.82065 · doi:10.1109/81.904879
[20] DOI: 10.1016/S0378-4371(03)00198-5 · Zbl 1026.92014 · doi:10.1016/S0378-4371(03)00198-5
[21] DOI: 10.1016/j.chaos.2003.09.039 · Zbl 1050.93064 · doi:10.1016/j.chaos.2003.09.039
[22] DOI: 10.1103/PhysRevE.61.5115 · doi:10.1103/PhysRevE.61.5115
[23] DOI: 10.1016/j.physa.2005.10.047 · doi:10.1016/j.physa.2005.10.047
[24] Wu C. W., IEEE Trans. Circuits Syst.-I 42 pp 430–
[25] DOI: 10.1088/0951-7715/18/3/007 · Zbl 1089.37024 · doi:10.1088/0951-7715/18/3/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.