×

Cesàro operators on Hardy spaces in the unit ball. (English) Zbl 1149.32004

Let \(\mathbb B_n\) denote the unit ball in \(\mathbb C^n\) and \(d\sigma\) the normalized Lebesgue measure in the unit sphere \(\mathbb S_n\). The Hardy space \(H^p(\mathbb B_n)\) consists of all holomorphic functions \(f\) on \(\mathbb B_n\), for which
\[ \sup_{0\leq r<1} \int_{\mathbb S_n} | f(r\cdot\zeta)| ^p\,d\sigma(\zeta)<\infty. \]
Let \(f(z)=\sum_{| \alpha| =0}^\infty a_\alpha Z^\alpha\) be a holomorphic function in the polydisc \(\mathbb U^n\) or the unit ball \(\mathbb B_n\), the Cesàro averaging operator on \(\mathbb U^n\) and \(\mathbb B_n\) is defined by
\[ \mathcal C^{\vec{\gamma}}(f)(z) = \sum_{| \alpha| =0}^\infty \frac{\sum_{\beta\leq \alpha} a_{\alpha-\beta} \prod_{j=1}^nA_{\beta_j}^{\gamma_j}}{\prod_{j=1}^n A_{\alpha_j}^{\gamma_j +1}} z^{\alpha}. \]
In this paper, the authors give the boundedness of the Cesàro operator on the Hardy spaces. The main result is the following:
Theorem. Let \(0<p<\infty\), \(\gamma=(\gamma_1, \cdots, \gamma_n)\), \(r=(r_1, \dots, r_n)\) such that \(\mathcal R \gamma_j>-1\) and \(0\leq r_j<1\), \(j=1, \dots, n\). Then there exists a constant \(C\) independent of \(f\) and \(r\) such that
\[ \int_{\mathbb S_n} | \mathcal C^{\vec{\gamma}}(f)(r\cdot \zeta)| ^p \,d\sigma(\zeta)\leq C(p,\vec{\gamma},n)\int_{\mathbb S_n} | f(r\cdot \zeta)| ^p \,d\sigma(\zeta) \]
for any holomorphic function \(f\) on \(\mathbb B_n\).

MSC:

32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
Full Text: DOI

References:

[1] Stempark, K., Cesàro averaging operators, Proc. Roy. Soc. Edinburgh Sect. A, 124, 121-126 (1994) · Zbl 0806.47027
[2] Anderson, K. F., Cesàro averaging operators on Hardy spaces, Proc. Roy. Soc. Edinburgh Sect. A, 126, 617-624 (1996) · Zbl 0865.47020
[3] Miao, J., The Cesàro operator is bounded in \(H^p\) for \(0 < p < 1\), Proc. Amer. Math. Soc., 116, 1077-1079 (1992) · Zbl 0787.47029
[4] Siskakis, A. G., Composition semigroups and the Cesàro operator on \(H^p(D)\), J. London Math. Soc. (2), 36, 153-164 (1987) · Zbl 0634.47038
[5] Siskakis, A. G., The Cesàro operator is bounded on \(H^1\), Proc. Amer. Math. Soc., 110, 461-462 (1990) · Zbl 0719.47020
[6] Siskakis, A. G., On the Bergman space norm of the Cesàro operator, Arch. Math., 67, 312-318 (1996) · Zbl 0859.47024
[7] Xiao, J., Cesàro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math., 68, 398-406 (1997) · Zbl 0870.30026
[8] Chang, D. C.; Gilbert, R.; Tie, J., Bergman projection and weighted holomorphic functions, (Oper. Theory Adv. Appl. (2003), Birkhäuser: Birkhäuser Basel), 147-169 · Zbl 1049.32007
[9] Stević, S., Cesàro averaging operators, Math. Nachr., 248-249, 185-189 (2003) · Zbl 1024.47014
[10] Hu, Z., The Cesàro operators on Bergman spaces in the ball, J. Contemp. Math. Anal., 26, 2, 183-192 (2005) · Zbl 1139.47310
[11] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer-Verlag: Springer-Verlag New York · Zbl 0495.32001
[12] Bochner, S., Classes of holomorphic functions of several variables in circular domains, Proc. Natl. Acad. Sci. USA, 46, 721-723 (1960) · Zbl 0092.29901
[13] Hardy, G. H.; Littlewood, J. E., Some properties of fractional integrals II, Math. Z., 34, 403-439 (1932) · Zbl 0003.15601
[14] Ren, G. B.; Kähler, U., Radial derivative on bounded symmetric domains, Studia Math., 157, 57-70 (2003) · Zbl 1031.46030
[15] Duren, P., Theory of \(H^p\) Spaces (1970), Academic Press: Academic Press New York · Zbl 0215.20203
[16] Zygmund, A., Trigonometric Series, vols. I&II combined (1968), Cambridge University Press: Cambridge University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.