×

The construction of 2D rotationally invariant wavelets and their application in image edge detection. (English) Zbl 1148.68462

Summary: Construction of rotationally invariant 2D wavelets is important in image processing, but is difficult. In this paper, the discrete form of a 2D rotationally invariant wavelet is constructed by back-projection from a 1D symmetrical wavelet. Such rotationally invariant 2D wavelets allow effective edge detection in any direction. These wavelets are combined with the 2D directional wavelets for the use in non-maximum suppression edge detection. The resulting binary edges are characterized by finer contours, differential detection characteristics and noise robustness compared to other edge detectors in various test images. In particular, where fine binary edges in noisy images are required, this novel approach compares favorably to the classical methods of Canny and Mallat with detection of more edges thanks to the implicit denoising properties and the full rotational invariance of the method.

MSC:

68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Mallat S., IEEE. Trans. on Pattern Anal. and Mach. Intell. 11 pp 647–
[2] R.L. Long, Multi-Dimension Wavelet Analysis (World Books Press, 1995) pp. 47–124.
[3] Wickhauser M. V., Adapted Wavelet Analysis from Theory to Software (1994)
[4] Karoui A., Appl. Math. Lett. 18 pp 239–
[5] DOI: 10.1006/acha.2000.0325 · Zbl 0977.42017 · doi:10.1006/acha.2000.0325
[6] Ruedin Ana M. C., Eurasia J. Appl. Signal Process. 1 pp 73–
[7] Do Minh N., IEEE Trans. Image Process. 14 pp 2091–
[8] Canny J., IEEE Trans. Pattern Anal. Mach. Intell. 8 pp 679–
[9] Wang Z., J. Image Graphics 8 pp 954–
[10] DOI: 10.1109/TPAMI.2005.173 · doi:10.1109/TPAMI.2005.173
[11] DOI: 10.1109/TPAMI.2005.75 · doi:10.1109/TPAMI.2005.75
[12] DOI: 10.1142/S0219691306001245 · Zbl 1142.65471 · doi:10.1142/S0219691306001245
[13] DOI: 10.1142/S0219691306001452 · Zbl 1141.68592 · doi:10.1142/S0219691306001452
[14] DOI: 10.1109/TIP.2002.802526 · doi:10.1109/TIP.2002.802526
[15] DOI: 10.1016/S0167-8655(02)00151-4 · Zbl 1010.68138 · doi:10.1016/S0167-8655(02)00151-4
[16] Li Y., J. Jilin Univ. (Science Edn.) 42 pp 483–
[17] DOI: 10.1109/83.624961 · doi:10.1109/83.624961
[18] DOI: 10.1109/18.119727 · Zbl 0745.93073 · doi:10.1109/18.119727
[19] DOI: 10.1142/S0219691306001257 · Zbl 1141.76445 · doi:10.1142/S0219691306001257
[20] S.J. Xing, Image Processing in Computer (Zhejiang University Press, 1990) pp. 447–459.
[21] C. K. Chui, An Introduction to Wavelets (Academic Press, 1992) pp. 32–36. · Zbl 0925.42016
[22] DOI: 10.1017/CBO9780511623820 · doi:10.1017/CBO9780511623820
[23] DOI: 10.1142/S0219691306001087 · Zbl 1092.68698 · doi:10.1142/S0219691306001087
[24] DOI: 10.1142/S0219691306001439 · Zbl 1213.42134 · doi:10.1142/S0219691306001439
[25] Tao D.-C., IEEE Trans. Pattern Anal. Mach. Intell. 29 pp 1–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.