×

Approximating the generalized capacitated tree-routing problem. (English) Zbl 1148.68420

Hu, Xiaodong (ed.) et al., Computing and combinatorics. 14th annual international conference, COCOON 2008, Dalian, China, June 27–29, 2008. Proceedings. Berlin: Springer (ISBN 978-3-540-69732-9/pbk). Lecture Notes in Computer Science 5092, 621-630 (2008).
Summary: In this paper, we introduce the generalized capacitated tree-routing problem (GCTR), which is described as follows. Given a connected graph \(G = (V,E)\) with a sink \(s \in V\) and a set \(M \subseteq V - {s}\) of terminals with a nonnegative demand \(q(v), v \in M\), we wish to find a collection \({\mathcal T}=\{T_{1},T_{2},\ldots,T_{\ell}\}\) of trees rooted at \(s\) to send all the demands to \(s\), where the total demand collected by each tree \(T _{i }\) is bounded from above by a demand capacity \(\kappa > 0\). Let \(\lambda > 0\) denote a bulk capacity of an edge, and each edge \(e \in E\) has an installation cost \(w(e) \geq 0\) per bulk capacity; each edge \(e\) is allowed to have capacity \(k \lambda \) for any integer \(k\), which installation incurs cost \(kw(e)\). To establish a tree routing \(T _{i }\), each edge \(e\) contained in \(T _{i }\) requires \(\alpha + \beta q^{\prime}\) amount of capacity for the total demand \(q^{\prime}\) that passes through edge \(e\) along \(T _{i }\) and prescribed constants \(\alpha ,\beta \geq 0\), where \(\alpha \) means a fixed amount used to separate the inside of the routing \(T _{i }\) from the outside while term \(\beta q^{\prime}\) means the net capacity proportional to \(q^{\prime}\). The objective of GCTR is to find a collection \({\mathcal T}\) of trees that minimizes the total installation cost of edges. Then GCTR is a new generalization of the several known multicast problems in networks with edge/demand capacities. In this paper, we prove that GCTR is \((2[ \lambda/(\alpha+\beta \kappa)] /\lfloor \lambda/(\alpha+\beta \kappa)\rfloor +\rho_{\text{ST}})\)-approximable if \(\lambda \geq \alpha + \beta \kappa \) holds, where \(\rho_{\text{ST}}\) is any approximation ratio achievable for the Steiner tree problem.
For the entire collection see [Zbl 1139.68006].

MSC:

68R10 Graph theory (including graph drawing) in computer science
68M10 Network design and communication in computer systems
Full Text: DOI

References:

[1] Behjat, L.: New Modeling and Optimization Techniques for the Global Routing Problem. Ph.D. Thesis, University of Waterloo (2002)
[2] Behjat, L.; Vannelli, A.; Rosehart, W., Integer Linear Programming Models for Global Routing, Informs Journal on Computing, 18, 2, 137-150 (2002) · Zbl 1241.90085 · doi:10.1287/ijoc.1040.0127
[3] Berman, P.; Ramaiyer, V., Improved Approximations for the Steiner Tree Problem, J. Algorithms, 17, 381-408 (1994) · Zbl 0820.68049 · doi:10.1006/jagm.1994.1041
[4] Cai, Z.; Lin, G.-H.; Xue, G.; Wang, L., Improved Approximation Algorithms for the Capacitated Multicast Routing Problem, Computing and Combinatorics, 136-145 (2005), Heidelberg: Springer, Heidelberg · Zbl 1128.68555 · doi:10.1007/11533719_16
[5] Garey, M. R.; Johnson, D. S., The Rectilinear Steiner Tree Problem is NP-Complete, SIAM J. Appl. Math., 32, 826-843 (1977) · Zbl 0396.05009 · doi:10.1137/0132071
[6] Garey, M. R.; Johnson, D. S., Computers and Intractability, a Guide to the Theory of NP-completeness (1978), San Francisco: Freeman, San Francisco
[7] Hassin, R.; Ravi, R.; Salman, F. S., Approximation Algorithms for a Capacitated Network Design Problem, Algorithmica, 38, 417-431 (2004) · Zbl 1138.90347 · doi:10.1007/s00453-003-1069-7
[8] Hougardy, S., Prömmel, H.J.: A 1.598-Approximation Algorithm for the Steiner Problem in Graphs. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 448-453 (1999) · Zbl 0946.68107
[9] Jothi, R.; Raghavachari, B.; Díaz, J.; Karhumäki, J.; Lepistö, A.; Sannella, D., Approximation Algorithms for the Capacitated Minimum Spanning Tree Problem and its Variants in Network Design, Automata, Languages and Programming, 805-818 (2004), Heidelberg: Springer, Heidelberg · Zbl 1099.68079
[10] Karpinsky, M.; Zelikovsky, A., New Approximation Algorithms for the Steiner Tree Problem, J. Combin. Optim., 1, 47-65 (1997) · Zbl 0895.90171 · doi:10.1023/A:1009758919736
[11] Morsy, E.; Nagamochi, H., An Improved Approximation Algorithm for Capacitated Multicast Routings in Networks, Theoritical Computer Sceince, 390, 81-91 (2008) · Zbl 1135.68064 · doi:10.1016/j.tcs.2007.10.021
[12] Morsy, E.; Nagamochi, H.; Cai, J.-Y.; Cooper, S. B.; Zhu, H., Approximating Capacitated Tree-Routings in Networks, Theory and Applications of Models of Computation, 342-353 (2007), Heidelberg: Springer, Heidelberg · Zbl 1198.68300 · doi:10.1007/978-3-540-72504-6_31
[13] Morsy, E., Nagamochi, H.: Approximating the Generalized Capacitated Tree-Routing Problem. Technical Report, 2008-001, Discrete Mathematics Lab., Graduate School of Informatics, Kyoto University, http://www.amp.i.kyoto-u.ac.jp/tecrep/TR2008.html · Zbl 1148.68420
[14] Prömmel, H.J., Steger, A.: RNC-Approximation Algorithms for the Steiner Problem. In: Proceedings of the 14th Annual Symposium on Theoritical Aspects of Computer Science, pp. 559-570 (1997) · Zbl 1498.68213
[15] Robins, G., Zelikovsky, A.Z.: Improved Steiner Tree Approximation in Graphs. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 770-779 (2000) · Zbl 0957.68084
[16] Takahashi, H.; Matsuyama, A., An Approximate Solution for the Steiner Problem in Graphs, Math. Japon., 24, 573-577 (1980) · Zbl 0435.05036
[17] Terlaky, T.; Vannelli, A.; Zhang, H.; Deng, X.; Du, D.-Z., On Routing in VLSI Design and Communication Networks, Algorithms and Computation, 1051-1060 (2005), Heidelberg: Springer, Heidelberg · Zbl 1152.68366 · doi:10.1007/11602613_104
[18] Zelikovsky, A., An 11/6-approximation Algorithm for the Network Steiner Problem, Algorithmica, 9, 463-470 (1993) · Zbl 0768.68192 · doi:10.1007/BF01187035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.