×

Approach theory in a category: A study of compactness and Hausdorff separation. (English) Zbl 1148.54003

A topological construct \({\mathcal X}\) with a proper \(({\mathcal E},{\mathcal M})\)-factorization system is endowed with a distance operator by defining a concrete functor \(\Lambda:{\mathcal X}\rightarrow { Prap}\) to the construct \(Prap\) of pre-approach spaces and contractions.
Then the following class of “closed morphisms” arises naturally: \({\mathcal F}_{\Lambda}=\{f: \Lambda f\) is a closed contraction in \(Prap\}.\) For \(\Lambda\) preserving subobjects, all the axioms put forward in the work of M. M. Clementino, E.Giuli and W. Tholen [Pedicchio, Maria Cristina (ed.) et al., Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Cambridge: Cambridge University Press. Encycl. Math. Appl. 97, 103–163 (2004; Zbl 1059.54012)] in order to develop a functional approach to general topology with respect to the class \({\mathcal F}_{\Lambda}\) are fulfilled. The author concentrates on \({\mathcal F}_{\Lambda}\)-compactness of an object \(\underline{X}\) in \({\mathcal X},\) which expresses the fact that the projection \(p_Y:{\underline{X}}\times {\underline{Y}}\rightarrow \underline{Y}\) belongs to \({\mathcal F}_{\Lambda}\) for every \({\mathcal X}\)-object \(\underline{Y}.\) Under certain conditions on \(\Lambda\), she proves that \({\mathcal F}_\Lambda\)-compactness of \(\underline{X}\) is equivalent to \(0\)-compactness of \(\Lambda(\underline{X})\) in \(Prap\). She finds that for \(\Lambda\) preserving subobjects, an \({\mathcal X}\)-object \(\underline{X}\) is \({\mathcal F}_{\Lambda}\)-Hausdorff iff the pretopological reflection of \(\Lambda(\underline{X})\) is Hausdorff.
In \(Top\) the classical compactness and \(b\)-compactness are captured if for \(\Lambda\) the functor describing the Kuratowski or \(b\)-closure, respectively, is considered. On the construct \(Ap\) of approach spaces natural functors \(\Lambda\) arise, which cannot be described by means of a closure operator.

MSC:

54B30 Categorical methods in general topology
54A05 Topological spaces and generalizations (closure spaces, etc.)
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
54D30 Compactness
18B99 Special categories

Citations:

Zbl 1059.54012
Full Text: DOI

References:

[1] Adámek, J.; Herrlich, H.; Strecker, G. E., Abstract and concrete categories. The joy of cats, Pure and Applied Mathematics (New York): A Wiley-Interscience Publication (1990), New York: Wiley, New York · Zbl 0695.18001
[2] Brümmer, G. C.L.; Künzi, H.-P. A., Sobrification and bicompletion of totally bounded quasi-uniform spaces, Math. Proc. Cambridge Philos. Soc., 101, 2, 237-247 (1987) · Zbl 0618.54024 · doi:10.1017/S0305004100066597
[3] Claes, V.; Colebunders, E., Productivity of Zariski compactness for constructs of affine sets, Topology Appl., 153, 747-755 (2005) · Zbl 1102.54010 · doi:10.1016/j.topol.2005.01.007
[4] Claes, V.; Colebunders, E.; Gerlo, A., Epimorphisms and cowellpoweredness for separated metrically generated theories, Acta Math. Hungar., 114, 1-2, 133-152 (2007) · Zbl 1121.54023 · doi:10.1007/s10474-006-0518-6
[5] Clementino, M. M.; Giuli, E.; Tholen, W., Topology in a category: compactness, Portugal. Math., 53, 4, 397-433 (1996) · Zbl 0877.18002
[6] Clementino, M. M.; Giuli, E.; Tholen, W., A functional approach to general topology, Categorical Foundations. Encyclopedia of Mathematics and Its Applications, 103-163 (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1059.54012
[7] Colebunders, E., Lowen, R.: On the Alexandroff subbase lemma for approach spaces (preprint) · Zbl 0496.54023
[8] Colebunders, E.; Lowen, R.; Wuyts, P., A Kuratowski-Mrówka theorem in approach theory, Topology Appl., 153, 756-766 (2005) · Zbl 1101.18002 · doi:10.1016/j.topol.2005.01.008
[9] Colebunders, E.; Sioen, M.; Lowen, R., Saturated collections of metrics, Categorical Structures and Their Applications, 51-65 (2004), River Edge, NJ: World Sci, River Edge, NJ · Zbl 1068.54001 · doi:10.1142/9789812702418_0005
[10] Clementino, M. M.; Tholen, W., Separated and connected maps, Appl. Categ. Structures, 6, 373-401 (1998) · Zbl 0935.18003 · doi:10.1023/A:1008636615842
[11] Dikranjan, D.; Giuli, E., Compactness, minimality and closedness with respect to a closure operator, Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), 284-296 (1989), Teaneck, NJ: World Sci, Teaneck, NJ
[12] Dikranjan, D.; Künzi, H. P., Separation and epimorphisms in quasi uniform spaces, Appl. Categ. Structures, 8, 175-207 (2000) · Zbl 0964.54021 · doi:10.1023/A:1008743408583
[13] Dikranjan, D.; Tholen, W., Categorical Structure of Closure Operators (1995), Dordrecht, The Netherlands: Kluwer, Dordrecht, The Netherlands · Zbl 0853.18002
[14] Dikranjan, D.; Uspenskij, V. V., Categorically compact topological groups, J. Pure Appl. Algebra, 126, 149-168 (1998) · Zbl 0887.22001 · doi:10.1016/S0022-4049(96)00139-9
[15] Fletcher, P.; Lindgren, W. F., Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics (1982), New York: Marcel Dekker, New York · Zbl 0501.54018
[16] Giuli, E., Zariski closure, completeness and compactness, Topology Appl., 163, 16, 3101-3112 (2006)
[17] Lowen, E.; Lowen, R., A quasitopos containing CONV and MET as full subcategories, Internat. J. Math. Math. Sci., 11, 3, 417-438 (1988) · Zbl 0672.54003 · doi:10.1155/S016117128800050X
[18] Lowen, R., The missing link in the topology-uniformity-metric triad, Oxford Mathematical Monographs: Oxford Science Publications (1997), New York: Oxford University Press, New York · Zbl 0891.54001
[19] Lowen, R.; Windels, B., AUnif: a common supercategory of pMET and Unif, Internat. J. Math. Math. Sci., 21, 1, 1-18 (1998) · Zbl 0890.54024 · doi:10.1155/S0161171298000015
[20] Salbany, S., A bitopological view of topology and order, Proceedings of the International Conference on Categorical Topology, Toledo, OH (1983), 481-504 (1983), Berlin: Heldermann, Berlin · Zbl 0557.54020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.