×

A Bowen type rigidity theorem for non-cocompact hyperbolic groups. (English) Zbl 1148.53032

The paper under review generalizes a result of Bowen by considering noncompact finite volume hyperbolic manifolds of dimension greater or equal to \(3\), and geometrically finite actions of their fundamental groups on real hyperbolic spaces.

MSC:

53C24 Rigidity results
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
Full Text: DOI

References:

[1] Bourdon M. (1995). Structure conforme au bord et flot geodesique d’un CAT()-espace. Enseign. Math. (2) 41(1–2): 63–102 · Zbl 0871.58069
[2] Bourdon M. (1996). Sur le birapport au bord des CAT()-espaces. Inst. Hautes Etudes Sci. Publ. Math. No. 83: 95–104 · Zbl 0883.53047 · doi:10.1007/BF02698645
[3] Bowditch B. (1993). Geometrical finiteness for hyperbolic groups. J. Funct. Anal. 113(2): 245–317 · Zbl 0789.57007 · doi:10.1006/jfan.1993.1052
[4] Bowen R. (1979). Hausdorff dimension of quasicircles. Inst. Hautes Etudes Sci. Publ. Math. No. 50: 11–25 · Zbl 0439.30032 · doi:10.1007/BF02684767
[5] Bishop C., Jones P. (1997). Hausdorff dimension and Kleinian groups. Acta Math. 179(1): 1–39 · Zbl 0921.30032 · doi:10.1007/BF02392718
[6] Bonk M., Kleiner B. (2004). Rigidity for quasi-Fuchsian actions on negatively curved spaces. Int. Math. Res. Not. 61: 3309–3316 · Zbl 1156.53311 · doi:10.1155/S1073792804141998
[7] Heinonen, J.: Lectures on analysis on metric spaces. Universitext (2001) · Zbl 0985.46008
[8] Newberger F. (2003). On the Patterson-Sullivan measure for geometrically finite groups acting on complex or quarternionic hyperbolic space. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). Geom. Dedicata 97: 215–249 · Zbl 1024.37026 · doi:10.1023/A:1023636513584
[9] Pansu P. (1989). Metriques de Carnot-Caratheodory et quasiisometries des espaces symetriques de rang un. Ann. of Math. (2) 129(1): 1–60 · Zbl 0678.53042 · doi:10.2307/1971484
[10] Sullivan D. (1982). Discrete conformal groups and measurable dynamics. Bull. Am. Math. Soc. (N.S.) 6(1): 57–73 · Zbl 0489.58027 · doi:10.1090/S0273-0979-1982-14966-7
[11] Stratmann B., Velani S.L. (1995). The Patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. Lond. Math. Soc. (3) 71(1): 197–220 · Zbl 0821.58026 · doi:10.1112/plms/s3-71.1.197
[12] Tukia P. (1985). On isomorphisms of geometrically finite Möbius groups. Inst. Hautes Études Sci. Publ. Math. No. 61: 171–214 · Zbl 0572.30036 · doi:10.1007/BF02698805
[13] Yue C. (1996). Dimension and rigidity of quasi-Fuchsian representations. Ann. of Math. (2) 143(2): 331–355 · Zbl 0843.22019 · doi:10.2307/2118646
[14] Yue C. (1996). The ergodic theory of discrete isometry groups on manifolds of variable negative curvature. Trans. Am. Math. Soc. 348(12): 4965–5005 · Zbl 0864.58047 · doi:10.1090/S0002-9947-96-01614-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.