×

Degenerations and fundamental groups related to some special toric varieties. (English) Zbl 1148.14302

Consider a complex projective surface \(X\) in \({\mathbb P}^N\) and a generic projection to \({\mathbb P}^2\), with branch curve \(B\subset{\mathbb P}^2\). Moishezon and Teicher proposed the study of \(\pi_1({\mathbb P}^2\setminus B)\) as part of their programme to use braid monodromy as a tool for managing complex surfaces. But this implies obtaining a presentation of \(\pi_1({\mathbb P}^2\setminus B)\) rather than treating it as an abstract group. The generators are derived by degenerating \(X\) into a union of planes.
Teicher and her collaborators have developed various tools to control the combinatorics in this sort of situation. Amram and Ogata here take \(X\) to be one of four toric varieties and construct toric degenerations. This is explained early on in the present paper. The process itself is fairly well known to experts in toric geometry, but it is new to interpret Teicher’s diagrams in this context. It makes the whole procedure appear more methodical than in earlier cases, and then the braid group computation is carried out by using the toric degeneration. In the last case of the four, moreover, \(X\) is singular but the procedure still works.

MSC:

14F35 Homotopy theory and fundamental groups in algebraic geometry
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] M. Amram, Galois covers of algebraic surfaces, Ph.D. dissertation, Bar-Ilan University, Ramat-Gan, 2001.
[2] M. Amram, C. Ciliberto, R. Miranda, and M. Teicher, Braid monodromy factorization for a non-prime K3 surface branch curve, submitted. · Zbl 1205.14050
[3] M. Amram and D. Goldberg, Higher degree Galois covers of \(\mathbb C\mathbb P^1\times T,\) Algebr. Geom. Topol. 4 (2004), 841–859. · Zbl 1069.14065 · doi:10.2140/agt.2004.4.841
[4] M. Amram, D. Goldberg, M. Teicher, and U. Vishne, The fundamental group of a Galois cover of \(\mathbb C\mathbb P^1\times T,\) Algebr. Geom. Topol. 2 (2002), 403–432. · Zbl 1037.14006 · doi:10.2140/agt.2002.2.403
[5] M. Amram and M. Teicher, On the degeneration, regeneration and braid monodromy of the surface \(T\times T,\) Acta Appl. Math. 75 (2003), 195–270. · Zbl 1085.14504 · doi:10.1023/A:1022396230382
[6] ——, The fundamental group of the complement of the branch curve of the surface \(T\times T,\) Osaka J. Math. 40 (2003), 1–37. · Zbl 1080.14516
[7] M. Amram, M. Teicher, and U. Vishne, The Coxeter quotient of the fundamental group of a Galois cover of \(T\times T,\) Comm. Algebra 34 (2006), 89–106. · Zbl 1086.14014 · doi:10.1080/00927870500346024
[8] ——, The fundamental group of the Galois cover of the surface \(T\times T,\) submitted.
[9] ——, Fundamental groups of Galois covers of Hirzebruch surfaces \(F_1(2,2),\) submitted.
[10] E. Artin, Theorie der Zöpfe, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, vol. 4, 1926.
[11] D. Auroux, S. K. Donaldson, L. Katzarkov, and M. Yotov, Fundamental groups of complements of plane curves and symplectic invariants, Topology 43 (2004), 1285–1318. · Zbl 1067.53069 · doi:10.1016/j.top.2004.01.006
[12] D. Auroux and L. Katzarkov, Branched coverings of \(\mathbb C\mathbb P^2\) and invariants of symplectic 4-manifolds, Invent. Math. 142 (2000), 631–673. · Zbl 0961.57019 · doi:10.1007/s002220000110
[13] W. Bruns, J. Gubeladze, and N. V. Trung, Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485 (1997), 123–160. · Zbl 0866.20050
[14] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993. · Zbl 0813.14039
[15] S. Hu, Semi-stable degeneration of toric varieties and their hypersurfaces, preprint, 2003, AG/0110091.
[16] W. Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617–646. · Zbl 0009.03901 · doi:10.1007/BF01449158
[17] B. Moishezon, Algebraic surfaces and the arithmetics of braids, II, Combinatorial methods in topology and algebraic geometry (Rochester, 1982), Contemp. Math., 44, pp. 311–344, Amer. Math. Soc., Providence, RI, 1985. · Zbl 0592.14013
[18] ——, On cuspidal branch curves, J. Algebraic Geom. 2 (1993), 309–384. · Zbl 0793.14017
[19] B. Moishezon, A. Robb, and M. Teicher, On Galois covers of Hirzebruch surfaces, Math. Ann. 305 (1996), 493–539. · Zbl 0853.14007 · doi:10.1007/BF01444235
[20] B. Moishezon and M. Teicher, Simply connected algebraic surfaces of positive index, Invent. Math. 89 (1987), 601–643. · Zbl 0627.14019 · doi:10.1007/BF01388987
[21] ——, Braid group technique in complex geometry I, Line arrangements in \(\mathbb C\mathbb P^2,\) Braids (Santa Cruz, 1986), Contemp. Math., 78, pp. 425–555, Amer. Math. Soc., Providence, RI, 1988.
[22] ——, Braid group technique in complex geometry II, From arrangements of lines and conics to cuspidal curves, Algebraic geometry (Chicago, 1989), Lecture Notes in Math., 1479, pp. 131–180, Springer-Verlag, Berlin, 1991. · Zbl 0764.14014 · doi:10.1007/BFb0086269
[23] ——, Finite fundamental groups, free over \(\mathbb Z/ c\mathbb Z,\) for Galois covers of \(\mathbb C\mathbb P^2,\) Math. Ann. 293 (1992), 749–766. · Zbl 0739.14003 · doi:10.1007/BF01444743
[24] ——, Braid group technique in complex geometry III: Projective degeneration of \(V_3,\) Classification of algebraic varieties (L’Aquila, 1992), Contemp. Math., 162, pp. 313–332, Amer. Math. Soc., Providence, RI, 1994.
[25] ——, Braid group technique in complex geometry IV: Braid monodromy of the branch curve \(S_3\) of \(V_3\rightarrow\mathbb C\mathbb P^2\) and application to \(\pi_1(\mathbb C\mathbb P^2-S_3,*),\) Classification of algebraic varieties (L’Aquila, 1992), Contemp. Math., 162, pp. 333–358, Amer. Math. Soc., Providence, RI, 1994.
[26] ——, Braid group technique in complex geometry V: The fundamental group of a complement of a branch curve of a Veronese generic projection, Comm. Anal. Geom. 4 (1996), 1–120. · Zbl 0862.57002
[27] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Berlin, 1985. · Zbl 0628.52002
[28] A. Robb, The topology of branch curves of complete intersections, Ph.D. thesis, Columbia Univ., New York, 1994.
[29] L. H. Rowen, M. Teicher, and U. Vishne, Coxeter covers of the symmetric groups, J. Group Theory 8 (2005), 139–169. · Zbl 1120.20040 · doi:10.1515/jgth.2005.8.2.139
[30] B. Sturmfels, Equations defining toric varieties, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, pp. 437–449, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0914.14022
[31] E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255–267. JSTOR: · Zbl 0006.41502 · doi:10.2307/2371128
[32] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51, 1929. JSTOR: · JFM 55.0806.01 · doi:10.2307/2370712
[33] ——, On the Poincaré group of rational plane curve, Amer. J. Math. 58 (1936), 607–619. JSTOR: · Zbl 0014.32801 · doi:10.2307/2370979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.