×

Generalized solutions to hybrid dynamical systems. (English) Zbl 1147.93032

Summary: Several recent results in the area of robust asymptotic stability of hybrid systems show that the concept of a generalized solution to a hybrid system is suitable for the analysis and design of hybrid control systems. In this paper, we show that such generalized solutions are exactly the solutions that arise when measurement noise in the system is taken into account.

MSC:

93C73 Perturbations in control/observation systems
34A37 Ordinary differential equations with impulses
93C65 Discrete event control/observation systems
35B35 Stability in context of PDEs

References:

[1] R.C. Arkin, Behavior Based Robotics. The MIT Press (1998).
[2] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984).
[3] J.-P. Aubin, J. Lygeros, M. Quincampoix, S.S. Sastry and N. Seube, Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Aut. Cont.47 (2002) 2-20. · Zbl 1364.49018
[4] A. Back, J. Guckenheimer and M. Myers, A dynamical simulation facility for hybrid systems, in Hybrid Systems, Lect. Notes Comput. Sci.36 (1993) 255-267.
[5] D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood Limited (1989). Zbl0683.34032 · Zbl 0683.34032
[6] O. Beker, C.V. Hollot, Y. Chait and H. Han, Fundamental properties of reset control systems. Automatica40 (2004) 905-915. Zbl1068.93050 · Zbl 1068.93050 · doi:10.1016/j.automatica.2004.01.004
[7] M. Boccadoro, Y. Wardi, M. Egerstedt and E. Verriest, Optimal control of switching surfaces in hybrid dynamical systems. Discrete Event Dyn. Syst.15 (2005) 433-448. Zbl1101.93054 · Zbl 1101.93054 · doi:10.1007/s10626-005-4060-4
[8] M.S. Branicky, Studies in hybrid systems: Modeling, analysis, and control. Ph.D. dissertation, Dept. Elec. Eng. and Computer Sci., MIT (1995). · Zbl 0874.68207
[9] M.S. Branicky, V.S. Borkar and S.K. Mitter, A unified framework for hybrid control: Model and optimal control theory. IEEE Trans. Aut. Cont.43 (1998) 31-45. Zbl0951.93002 · Zbl 0951.93002 · doi:10.1109/9.654885
[10] R.W. Brocket, Hybrid Models for Motion Control Systems, in Essays on Control: Perspectives in the Theory and its Applications, H.L. Trentelman and J.C. Willems Eds., Birkhäuser (1993) 29-53.
[11] M. Broucke and A. Arapostathis, Continuous selections of trajectories of hybrid systems. Systems Control Lett.47 (2002) 149-157. Zbl1003.93030 · Zbl 1003.93030 · doi:10.1016/S0167-6911(02)00185-8
[12] C. Cai, A.R. Teel and R. Goebel, Converse Lyapunov theorems and robust asymptotic stability for hybrid systems, in Proc. 24th American Control Conference (2005) 12-17.
[13] F. Ceragioli, Some remarks on stabilization by means of discontinuous feedbacks. Systems Control Lett.45 (2002) 271-281. Zbl0994.93045 · Zbl 0994.93045 · doi:10.1016/S0167-6911(01)00185-2
[14] V. Chellaboina, S.P. Bhat and W.H. Haddad, An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlin. Anal.53 (2003) 527-550. Zbl1082.37018 · Zbl 1082.37018 · doi:10.1016/S0362-546X(02)00316-4
[15] F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Aut. Cont.42 (1997) 1394-1407. Zbl0892.93053 · Zbl 0892.93053 · doi:10.1109/9.633828
[16] J.C. Clegg, A nonlinear integrator for servomechanisms. Transactions A.I.E.E.77 (Part II) 41-42, 1958.
[17] P. Collins, A trajectory-space approach to hybrid systems, in Proc. 16th MTNS (2004).
[18] P. Collins and J. Lygeros, Computability of finite-time reachable sets for hybrid systems, in Proc. 44th IEEE Conference on Decision Control (2005) 4688-4693.
[19] J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estimation Control4 (1994) 67-84. Zbl0925.93827 · Zbl 0925.93827
[20] M. Egerstedt, Behavior based robotics using hybrid automata, in Hybrid Systems: Computation and Control, Lect. Notes Comput. Sci.1790 (2000) 103-116. Zbl0938.93585 · Zbl 0938.93585
[21] A.F. Filippov, Differential equations with discontinuous right-hand sides (English). Matemat. Sbornik.151 (1960) 99-128. Zbl0138.32204 · Zbl 0138.32204
[22] M. Garavello and B. Piccoli, Hybrid necessary principle. SIAM J. Control Optim.43 (2005) 1867-1887. · Zbl 1084.49021 · doi:10.1137/S0363012903416219
[23] R. Goebel and A.R. Teel, Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica42 (2006) 573-587. Zbl1106.93042 · Zbl 1106.93042 · doi:10.1016/j.automatica.2005.12.019
[24] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai and R.G. Sanfelice, Hybrid systems: Generalized solutions and robust stability, in Proc. 6th IFAC Symposium in Nonlinear Control Systems (2004) 1-12.
[25] O. Hàjek, Discontinuous differential equations I. J. Diff. Eqn.32 (1979) 149-170. · Zbl 0365.34017
[26] H. Hermes, Discontinuous vector fields and feedback control, in Differential Equations and Dynamical Systems, J.K. Hale and J.P. LaSalle Eds., Academic Press, New York (1967) 155-165. Zbl0183.15905 · Zbl 0183.15905
[27] J.P. Hespanha, Uniform stability of switched linear systems: Extensions of LaSalle’s invariance principle. IEEE Trans. Aut. Cont.49 (2004) 470-482. · Zbl 1365.93348
[28] J.P. Hespanha, A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal. (Special Issue on Hybrid Systems)62 (2005) 1353-1383. Zbl1131.90322 · Zbl 1131.90322 · doi:10.1016/j.na.2005.01.112
[29] C.M. Kellet and A.R. Teel, Smooth Lyapunov functions and robustness of stability for differential inclusions. Systems Control Lett.52 (2004) 395-405. Zbl1157.93470 · Zbl 1157.93470 · doi:10.1016/j.sysconle.2004.02.015
[30] N.N. Krasovskii, Game-Theoretic Problems of Capture. Nauka, Moscow (1970).
[31] N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag (1988). Zbl0649.90101 · Zbl 0649.90101
[32] K.R. Krishnan and I.M. Horowitz, Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances. Inter. J. Control19 (1974) 689-706. Zbl0276.93019 · Zbl 0276.93019 · doi:10.1080/00207177408932666
[33] J. Lygeros, K.H. Johansson, S.S. Sastry and M. Egerstedt, On the existence of executions of hybrid automata, in Proc. 41st Conference on Decision and Control (1999) 2249-2254. · Zbl 0948.93031
[34] J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang and S.S. Sastry, Dynamical properties of hybrid automata. IEEE Trans. Aut. Cont.48 (2003) 2-17. · Zbl 1364.93503
[35] A.N. Michel, L. Wang and B. Hu, Qualitative Theory of Dynamical Systems. Dekker (2001).
[36] D. Nesic, L. Zaccarian and A.R. Teel, Stability properties of reset systems, in Proc. 16th IFAC World Congress in Prague (2005).
[37] C. Prieur, Asymptotic controllability and robust asymptotic stabilizability. SIAM J. Control Optim.43 (2005) 1888-1912. Zbl1116.93023 · Zbl 1116.93023 · doi:10.1137/S0363012901385514
[38] C. Prieur, R. Goebel and A.R. Teel, Results on robust stabilization of asymptotically controllable systems by hybrid feedback, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005) 2598-2603.
[39] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998).
[40] A.V. Roup, D.S. Bernstein, S.G. Nersesov, W.M. Haddad and V. Chellaboina, Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincaré maps. Inter. J. Control76 (2003) 1685-1698. Zbl1052.93044 · Zbl 1052.93044 · doi:10.1080/00207170310001632412
[41] R.G. Sanfelice, R. Goebel and A.R. Teel, Results on convergence in hybrid systems via detectability and an invariance principle, in Proc. 24th IEEE American Control Conference (2005) 551-556.
[42] J. Sprinkle, A.D. Ames, A. Pinto, H. Zheng and S.S. Sastry, On the partitioning of syntax and semantics for hybrid systems tools, in Proc. 44th IEEE Conference on Decision and Control and European Control Conference (2005).
[43] S.Y. Tang and R.A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol.50 (2005) 257-292. Zbl1080.92067 · Zbl 1080.92067 · doi:10.1007/s00285-004-0290-6
[44] L. Tavernini, Differential automata and their discrete simulators. Nonlin. Anal.11 (1987) 665-683. Zbl0666.34005 · Zbl 0666.34005 · doi:10.1016/0362-546X(87)90034-4
[45] L. Tavernini, Generic properties of impulsive hybrid systems. Dynamic Systems & Applications13 (2004) 533-551. Zbl1068.34081 · Zbl 1068.34081
[46] S.E. Tuna, R.G. Sanfelice, M.J. Messina and A.R. Teel, Hybrid MPC: Open-minded but not easily swayed, in Proc. International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (2005). · Zbl 1223.93101
[47] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Lecture Notes in Control and Information Sciences. Springer (2000). · Zbl 0940.93004
[48] H.S. Witsenhausen, A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Aut. Cont.11 (1966) 161-167.
[49] L. Zaccarian, D. Nesic and A.R. Teel, First order reset elements and the Clegg integrator revisited, in Proc. 24th American Control Conference (2005) 563-568.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.