×

Characteristic subsurfaces, character varieties and Dehn fillings. (English) Zbl 1147.57002

For a one-cusped hyperbolic \(3\)-manifold \(M\), there are only finitely many slopes on the boundary torus of \(M\) which yield non-hyperbolic \(3\)-manifolds by Dehn filling. The results in this paper give new upper bounds for the distance \(\Delta(\alpha,\beta)\) between two such exceptional slopes \(\alpha\) and \(\beta\) in several special cases.
As usual, let \(M(\gamma)\) denote the resulting closed manifold obtained by \(\gamma\)-Dehn filling on \(M\). The first result claims that if \(M(\beta)\) is reducible and \(M(\alpha)\) has finite fundamental group, then \(\Delta(\alpha,\beta)\leq 2\). Moreover, some constraints are given when \(\Delta=2\). This is an improvement of the previouly known bound by S. Boyer and X. Zhang [Ann. Math. (2) 148, No. 3, 737–801 (1998; Zbl 1007.57016)]. (Finally, the case where \(\Delta=2\) is eliminated by S. Boyer, C. Gordon and X. Zhang [Reducible and finite Dehn fillings, preprint, 2007].)
Suppose that \(M(\beta)\) is reducible and \(\beta\) is a strict boundary slope. If \(M(\alpha)\) is very small, then \(\Delta(\alpha,\beta)\leq 3\). A closed \(3\)-manifold is said to be very small if its fundamental group has no non-abelian free subgroup.
If \(M(\alpha)\) admits a \(\pi_1\)-injective immersed torus, then \(\Delta(\alpha,\beta)\leq 4\).
In general, C. McA. Gordon [Jones, Vaughan F. R. (ed.) et al., Knot theory. Proceedings of the mini-semester, Warsaw, Poland, July 13–August 17, 1995. Warszawa: Polish Academy of Sciences, Institute of Mathematics, Banach Cent. Publ. 42, 129–144 (1998; Zbl 0916.57016)] conjectures that \(\Delta(\alpha,\beta)\leq 8\) for any two exceptional slopes, and there are only four specific manifolds which have a pair of exceptional slopes with distance greater than \(5\). The results in the paper under review can imply the restricted solution of Gordon’s conjecture.
Most of the arguments are based on \(PSL_2(\mathbb{C})\)-character variety theory developed in Marc Culler and Peter B. Shalen [Ann. Math. (2) 117, 109–146 (1983; Zbl 0529.57005)], S. Boyer and X. Zhang [Ann. Math. (2) 148, No. 3, 737–801 (1998; Zbl 1007.57016), and J. Differ. Geom. 59, No. 1, 87–176 (2001; Zbl 1030.57024)], etc.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
57M99 General low-dimensional topology
57N10 Topology of general \(3\)-manifolds (MSC2010)

References:

[1] L Ben Abdelghani, S Boyer, A calculation of the Culler-Shalen seminorms associated to small Seifert Dehn fillings, Proc. London Math. Soc. \((3)\) 83 (2001) 235 · Zbl 1029.57001 · doi:10.1112/plms/83.1.235
[2] S Boyer, On the local structure of \(\mathrm{SL}(2,\mathbbC)\)-character varieties at reducible characters, Topology Appl. 121 (2002) 383 · Zbl 1021.57011 · doi:10.1016/S0166-8641(01)00278-4
[3] S Boyer, M Culler, P B Shalen, X Zhang, Characteristic subsurfaces and Dehn filling, Trans. Amer. Math. Soc. 357 (2005) 2389 · Zbl 1078.57019 · doi:10.1090/S0002-9947-04-03576-7
[4] S Boyer, C M Gordon, X Zhang, Dehn fillings of large hyperbolic \(3\)-manifolds, J. Differential Geom. 58 (2001) 263 · Zbl 1042.57007
[5] S Boyer, X Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996) 1005 · Zbl 0936.57010 · doi:10.1090/S0894-0347-96-00201-9
[6] S Boyer, X Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. \((2)\) 148 (1998) 737 · Zbl 1007.57016 · doi:10.2307/121031
[7] S Boyer, X Zhang, On simple points of character varieties of \(3\)-manifolds, Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ (2000) 27 · Zbl 0971.57025
[8] S Boyer, X Zhang, Virtual Haken \(3\)-manifolds and Dehn filling, Topology 39 (2000) 103 · Zbl 0933.57014 · doi:10.1016/S0040-9383(98)00061-5
[9] S Boyer, X Zhang, A proof of the finite filling conjecture, J. Differential Geom. 59 (2001) 87 · Zbl 1030.57024
[10] A Casson, D Jungreis, Convergence groups and Seifert fibered \(3\)-manifolds, Invent. Math. 118 (1994) 441 · Zbl 0840.57005 · doi:10.1007/BF01231540
[11] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. \((2)\) 125 (1987) 237 · Zbl 0633.57006 · doi:10.2307/1971311
[12] M Culler, P B Shalen, Varieties of group representations and splittings of \(3\)-manifolds, Ann. of Math. \((2)\) 117 (1983) 109 · Zbl 0529.57005 · doi:10.2307/2006973
[13] N M Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999) 623 · Zbl 0928.57012 · doi:10.1007/s002220050321
[14] D Gabai, Foliations and the topology of \(3\)-manifolds. II, J. Differential Geom. 26 (1987) 461 · Zbl 0627.57012
[15] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. \((2)\) 136 (1992) 447 · Zbl 0785.57004 · doi:10.2307/2946597
[16] D Gabai, Homotopy hyperbolic \(3\)-manifolds are virtually hyperbolic, J. Amer. Math. Soc. 7 (1994) 193 · Zbl 0801.57009 · doi:10.2307/2152726
[17] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic \(3\)-manifolds are hyperbolic, Ann. of Math. \((2)\) 157 (2003) 335 · Zbl 1052.57019 · doi:10.4007/annals.2003.157.335
[18] C M Gordon, Dehn filling: a survey, Banach Center Publ. 42, Polish Acad. Sci. (1998) 129 · Zbl 0916.57016
[19] C M Gordon, J Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996) 385 · Zbl 0859.57016 · doi:10.1016/0040-9383(95)00016-X
[20] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980) · Zbl 0433.57001
[21] S Lee, Reducing and toroidal Dehn fillings on \(3\)-manifolds bounded by two tori, Math. Res. Lett. 13 (2006) 287 · Zbl 1129.57026 · doi:10.4310/MRL.2006.v13.n2.a9
[22] P E Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research (1978) · Zbl 0411.14003
[23] S Oh, Reducible and toroidal \(3\)-manifolds obtained by Dehn fillings, Topology Appl. 75 (1997) 93 · Zbl 0870.57008 · doi:10.1016/S0166-8641(96)00065-X
[24] P Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980) 241 · Zbl 0439.57004 · doi:10.2307/2374238
[25] J P Serre, Représentations linéaires des groupes finis, Hermann (1978) 182 · Zbl 0223.20003
[26] F Waldhausen, On irreducible \(3\)-manifolds which are sufficiently large, Ann. of Math. \((2)\) 87 (1968) 56 · Zbl 0157.30603 · doi:10.2307/1970594
[27] Y Q Wu, Incompressibility of surfaces in surgered \(3\)-manifolds, Topology 31 (1992) 271 · Zbl 0872.57022 · doi:10.1016/0040-9383(92)90020-I
[28] Y Q Wu, Dehn fillings producing reducible manifolds and toroidal manifolds, Topology 37 (1998) 95 · Zbl 0886.57012 · doi:10.1016/S0040-9383(97)00016-5
[29] Y Q Wu, Standard graphs in lens spaces, Pacific J. Math. 220 (2005) 389 · Zbl 1100.57024 · doi:10.2140/pjm.2005.220.389
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.