×

Entanglement generation and concentration via adiabatic evolution with trapped ions. (English) Zbl 1146.81307

Summary: We propose two schemes via adiabatic evolution of dark eigenstates in an ion trap system. One is an entanglement generation of multi-ion cluster states, the other is entanglement concentration via entanglement swapping. Our schemes are robust against moderate fluctuations of experimental parameters since we utilize the adiabatic passage in the main procedure. The current idea can be generalized to other systems.

MSC:

81P68 Quantum computation
78A35 Motion of charged particles
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.69.2881 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[2] DOI: 10.1038/35005001 · Zbl 1369.81023 · doi:10.1038/35005001
[3] DOI: 10.1103/PhysRevLett.86.910 · doi:10.1103/PhysRevLett.86.910
[4] DOI: 10.1103/PhysRevA.69.062311 · Zbl 1232.81007 · doi:10.1103/PhysRevA.69.062311
[5] DOI: 10.1088/1367-2630/7/1/194 · doi:10.1088/1367-2630/7/1/194
[6] DOI: 10.1103/PhysRevA.71.060310 · doi:10.1103/PhysRevA.71.060310
[7] DOI: 10.1103/PhysRevA.71.034308 · Zbl 1227.81018 · doi:10.1103/PhysRevA.71.034308
[8] DOI: 10.1103/PhysRevLett.95.160501 · doi:10.1103/PhysRevLett.95.160501
[9] DOI: 10.1103/PhysRevA.72.062108 · doi:10.1103/PhysRevA.72.062108
[10] DOI: 10.1103/PhysRevA.73.065802 · doi:10.1103/PhysRevA.73.065802
[11] DOI: 10.1103/PhysRevA.73.033818 · doi:10.1103/PhysRevA.73.033818
[12] DOI: 10.1088/0953-8984/18/49/L01 · doi:10.1088/0953-8984/18/49/L01
[13] DOI: 10.1103/PhysRevLett.70.1895 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[14] DOI: 10.1103/PhysRevA.53.2046 · doi:10.1103/PhysRevA.53.2046
[15] DOI: 10.1103/PhysRevLett.76.722 · doi:10.1103/PhysRevLett.76.722
[16] DOI: 10.1103/PhysRevA.60.194 · doi:10.1103/PhysRevA.60.194
[17] DOI: 10.1103/PhysRevLett.90.207901 · doi:10.1103/PhysRevLett.90.207901
[18] DOI: 10.1038/35059017 · doi:10.1038/35059017
[19] DOI: 10.1103/PhysRevLett.74.4091 · doi:10.1103/PhysRevLett.74.4091
[20] Sackett C. A., Nature 404 pp 256–
[21] DOI: 10.1126/science.1097522 · doi:10.1126/science.1097522
[22] DOI: 10.1038/nature01494 · doi:10.1038/nature01494
[23] DOI: 10.1038/nature01336 · doi:10.1038/nature01336
[24] DOI: 10.1038/nature02608 · doi:10.1038/nature02608
[25] DOI: 10.1103/PhysRevLett.95.080502 · doi:10.1103/PhysRevLett.95.080502
[26] DOI: 10.1103/PhysRevA.52.4214 · doi:10.1103/PhysRevA.52.4214
[27] DOI: 10.1038/nature02570 · doi:10.1038/nature02570
[28] DOI: 10.1103/PhysRevLett.75.4714 · Zbl 1020.81550 · doi:10.1103/PhysRevLett.75.4714
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.