×

Geodesic active contour under geometrical conditions: theory and 3D applications. (English) Zbl 1146.65024

Summary: We propose a new scheme for both detection of boundaries and fitting of geometrical data based on a geometrical partial differential equation, which allows a rigorous mathematical analysis. The model is a geodesic-active-contour-based model, in which we are trying to determine a curve that best approaches the given geometrical conditions (for instance a set of points or curves to approach) while detecting the object under consideration. Formal results concerning existence, uniqueness (viscosity solution) and stability are presented as well. We give the discretization of the method using an additive operator splitting scheme which is very efficient for this kind of problem. We also give 2D and 3D numerical examples on real data sets.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
Full Text: DOI

References:

[1] Alvarez, L., Lions P.L., Morel, J.M.: Image selective smoothing and edge detection by non linear diffusion. SIAM J. Numer. Anal. 29(3), 845–866 (1992) · Zbl 0766.65117 · doi:10.1137/0729052
[2] Alvarez, O., Cardaliaguet, P., Monneau, R.: Existence and uniqueness for dislocation dyna mics with nonnegative velocity. Interfaces Free Bound. 7(4), 415–434 (2005) · Zbl 1099.35148 · doi:10.4171/IFB/131
[3] Apprato, D., Arcangéli, R.: Ajustement spline le long d’un ensemble de courbes (Spline fitting along a set of curves) RAIRO Modél. Math. Anal. Numér. 25(2), 193–212 (1991) · Zbl 0725.65017
[4] Apprato, D., Gout, C., Komatitsch, D.: Surface fitting from ship track data: application to the bathymetry of the Marianas trench. Math. Geol. 34(7), 831–843 (2002) · Zbl 1017.65006 · doi:10.1023/A:1020976611029
[5] Apprato, D., Ducassou, D., Gout, C., Laffon, E., Le Guyader, C.: Segmentation of medical image sequence under constraints: application to non-invasive assessment of pulmonary arterial hypertension. Int. J. Comput. Math. 5, 527–536 (2004) · Zbl 1053.92028
[6] Barles, G.: Solutions de Viscosité des Équations de Hamilton-Jacobi. Springer-Verlag, Berlin (1994) · Zbl 0819.35002
[7] Barles, G., Da Lio, F.: A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions. Interfaces Free Bound. 5(3), 239–274 (2003) · Zbl 1046.35059
[8] Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993) · Zbl 0804.68159 · doi:10.1007/BF01385685
[9] Caselles, V., Sbert, C.: What is the best causal scale space for three-dimensional images?. SIAM J. Appl. Math. 56(4), 1199–1246 (1996) · Zbl 0854.68115 · doi:10.1137/S0036139994269352
[10] Caselles, V., Coll, B.: Snakes in movement. SIAM J. Numer. Anal. 33(6), 2445–2456 (1997) · Zbl 0861.68111 · doi:10.1137/S0036142994275044
[11] Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces: a geometric three-dimensional segmentation approach. Numer. Math. 77(4), 423–451 (1997) · Zbl 0891.68093 · doi:10.1007/s002110050294
[12] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–87 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[13] Chan, T.F., Vese, L.: An efficient variational multiphase motion for the Mumford–Shah segmentation mode. Sig. Sys. Comp. 1, 490–494 (2000), IEEE Asilomar Conference on Signals Systems and Computers
[14] Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[15] Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Notices Am. Math. Soc. 50(1), 14–26 (2003) · Zbl 1168.94315
[16] Chan, T.F., Sandberg, B., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000) · doi:10.1006/jvci.1999.0442
[17] Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991) · Zbl 0696.35087
[18] Cohen, L.D.: On active contours models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991) · Zbl 0774.68111 · doi:10.1016/1049-9660(91)90028-N
[19] Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[20] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–69 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[21] Deckelnick, K., Elliott, C.M.: Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities. Interfaces Free Bound. 6(3), 329–349 (2004) · Zbl 1081.35115 · doi:10.4171/IFB/103
[22] Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry Methods and Applications, Part I, The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag (1992) · Zbl 0751.53001
[23] Falcone, M., Ferreti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67(3), 315–344 (1994) · Zbl 0791.65046 · doi:10.1007/s002110050031
[24] Freidlin, M.: Functional Integration and PDE. Princeton University Press (1985) · Zbl 0568.60057
[25] Giga, Y., Sato, M.H.: A level set approach to semicontinuous viscosity solutions for Cauchy problems. Commun. Partial Differ. Equ. 26(5–6), 813–839 (2001) · Zbl 1005.49025 · doi:10.1081/PDE-100002379
[26] Giga, Y., Sato, M.H.: Generalized interface evolution with boundary condition. Proc. Japan Acad. 67(A), 263–266 (1991) · Zbl 0786.35076 · doi:10.3792/pjaa.67.263
[27] Gout, C.: C k surface reconstruction from surface patches. Comput. Math. Appl. 44(3–4), 389–406 (2002) · Zbl 1055.65027 · doi:10.1016/S0898-1221(02)00157-8
[28] Gout, C., Komatitsch, D.: Surface fitting of rapidly varying data using rank coding: application to geophysical surfaces. Math. Geol. 32(7), 873–888 (2000) · doi:10.1023/A:1007500624487
[29] Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. Algorithms 39(1–3), 155–173 (2005) · Zbl 1069.65016 · doi:10.1007/s11075-004-3627-8
[30] Gout, C., Vieira-Testé, S.: An algorithm for segmentation under interpolation conditions using deformable models. Int. J. Comput. Math. 80(1), 47–54 (2003) · Zbl 1013.65068 · doi:10.1080/00207160304665
[31] Gout, C., Le Guyader, C.: Segmentation of complex geophysical structures with well data. Comput. Geosci. 10(4), 361–372 (2006) · Zbl 1196.74102 · doi:10.1007/s10596-006-9029-3
[32] Ishii, H.: Viscosity solutions and their applications. Sugaku Expo. 10(2), 123–141 (1995) · Zbl 0969.35021
[33] Ishii, H., Sato, M.H.: Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain. Nonlinear Anal. 57A(7–8), 1077–1098 (2004) · Zbl 1055.35066 · doi:10.1016/j.na.2004.04.003
[34] Kocan, M.: Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72(1), 73–92 (1995) · Zbl 0846.65053 · doi:10.1007/s002110050160
[35] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proceedings, Fifth International Conference on Computer Vision, pp. 810–815 (1995)
[36] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134(3), 275–301 (1996) · Zbl 0937.53029 · doi:10.1007/BF00379537
[37] Le Guyader, C.: Imagerie Mathématique: Segmentation sous contraintes géométriques, Théory et Applications. Ph. D. dissertation, INSA Rouen, France (2004)
[38] Le Guyader, C., Apprato, D., Gout, C.: Using a level set approach for image segmentation under interpolation conditions. Numer. Algorithms 39(1–3), 221–235 (2005) · Zbl 1069.65070 · doi:10.1007/s11075-004-3631-z
[39] Le Guyader, C., Vese, L.: Self-repelling snakes for topology-preserving segmentation models. Accepted for publication in IEEE Transactions on Image Processing (2008, in press)
[40] Lions, P.L., Rouy, E., Tourin, A.: Shape-from-shading, viscosity solutions and edges. Numer. Math. 64(3), 323–353 (1993) · Zbl 0804.68160 · doi:10.1007/BF01388692
[41] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag (2003) · Zbl 1026.76001
[42] Osher, S., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[43] Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics. Computer Vision and Material Science, Cambridge University Press, Londres, (1999) · Zbl 0973.76003
[44] Sethian, J.A.: Evolution, implementation and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555 (2001) · Zbl 0988.65095 · doi:10.1006/jcph.2000.6657
[45] Tsai, Y., Giga, Y., Osher, S.: A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comput. 72(241), 159–181 (2003) · Zbl 1013.65088
[46] Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002) · Zbl 1012.68782 · doi:10.1023/A:1020874308076
[47] Weickert, J., Kühne, G.: Fast methods for implicit active contours models. preprint 61, Universität des Saarlandes, Saarbrücken (2002)
[48] Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non parametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000) · Zbl 1011.68538 · doi:10.1006/cviu.2000.0875
[49] Zhao, H.K., Chan, T.F., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996) · Zbl 0860.65050 · doi:10.1006/jcph.1996.0167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.