×

One-parameter continuous fields of Kirchberg algebras. (English) Zbl 1146.46037

A Kirchberg algebra is a separable nuclear purely infinite simple \(C^*\)-algebra. The authors show that a separable, unital or stable, continuous field over \([0,1]\) of Kirchberg algebras satisfying the UCT and having finitely generated \(K\)-theory groups is isomorphic to a trivial field iff the associated \(K\)-theory presheaf is trivial. It is also shown that the \(K_d\)-sheaf, \(d\in\mathbb Z/2\mathbb Z\), is a complete invariant for separable stable continuous fields of Kirchberg algebras if the \(K_d\)-groups of the fibers are torsion free and the \(K_{d+1}\)-groups are trivial. As a corollary, it is shown that unital separable continuous fields of \(C^*\)-algebras over \([0,1]\) with fibers isomorphic to the Cuntz algebra \(\mathcal O_n\) (\(2\leq n\leq\infty\)) are trivial.

MSC:

46L35 Classifications of \(C^*\)-algebras
46L05 General theory of \(C^*\)-algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)
Full Text: DOI

References:

[1] Akemann C.A., Pedersen G.K. and Tomiyama J. (1973). Multipliers of C *-algebras. J. Funct. Anal. 13: 277–301 · Zbl 0258.46052 · doi:10.1016/0022-1236(73)90036-0
[2] Blackadar, B.: Semiprojectivity in simple C *-algebras. In: Operator algebras and applications, Volume 38 of Adv. Stud. Pure Math., Tokyo: Math. Soc. Japan, 2004, pp. 1–17 · Zbl 1065.46032
[3] Blanchard, É.: Tensor products of C(X)-algebras over C(X). In: Recent advances in operator algebras (Orléans, 1992), Astérisque 232, 81–92 (1995) · Zbl 0842.46049
[4] Blanchard É. (1996). Déformations de C *-algèbres de Hopf. Bull. Soc. Math. France 124(1): 141–215 · Zbl 0851.46040
[5] Blanchard É. and Kirchberg E. (2004). Global Glimm halving for C*-bundles. J. Op. Theory 52: 385–420 · Zbl 1073.46509
[6] Blanchard É. and Kirchberg E. (2004). Non-simple purely infinite C*-algebras: the Hausdorff case. J. Funct. Anal. 207: 461–513 · Zbl 1048.46049 · doi:10.1016/j.jfa.2003.06.008
[7] Brown L.G. and Dadarlat M. (1996). Extensions of C *-algebras and quasidiagonality. J. London Math. Soc. 53(3): 582–600 · Zbl 0857.46045
[8] Dadarlat, M.: Continuous fields of C*-algebras over finite dimensional spaces. http://arxiv.org/list/math.OA/0611405, 2006 · Zbl 1190.46040
[9] Dadarlat M. and Loring T.A. (1996). A universal multicoefficient theorem for the Kasparov groups. Duke Math. J. 84(2): 355–377 · Zbl 0881.46048 · doi:10.1215/S0012-7094-96-08412-4
[10] Dadarlat M. and Pasnicu C. (2005). Continuous fields of Kirchberg C*-algebras. J. Funct. Anal. 226: 429–451 · Zbl 1083.46035 · doi:10.1016/j.jfa.2005.01.005
[11] Dixmier, J.: C *-algebras. Amsterdam: North Holland, 1982
[12] Eilers S. and Loring T.A. (1999). Computing contingencies for stable relations. Internat. J. Math. 10(3): 301–326 · Zbl 1039.46506 · doi:10.1142/S0129167X99000112
[13] Kasparov G.G. (1980). Hilbert C *-modules: Theorems of Stinespring and Voiculescu. J. Op. Theory 4: 133–150 · Zbl 0456.46059
[14] Kirchberg, E.: Das nicht-kommutative Michael-auswahlprinzip und die klassifikation nicht-einfacher algebren. In: C *-algebras, (Münster, 1999), Berlin: Springer, 2000, pp. 92–141 · Zbl 0976.46051
[15] Kirchberg E. and Rørdam M. (2000). Non-simple purely infinite C *-algebras. Amer. J. Math. 122(3): 637–666 · Zbl 0968.46042 · doi:10.1353/ajm.2000.0021
[16] Kirchberg E. and Rørdam M. (2002). Infinite non-simple C *-algebras: absorbing the Cuntz algebra O Adv. in Math. 167(2): 195–264 · Zbl 1030.46075 · doi:10.1006/aima.2001.2041
[17] Kirchberg E. and Wassermann S. (1995). Operations on continuous bundles of C *-algebras. Math. Ann. 303(4): 677–697 · Zbl 0835.46057 · doi:10.1007/BF01461011
[18] Lin, H.: Full extensions and approximate unitary equivalence. http://arxiv.org/list/math.OA/0401242, 2004
[19] Lin, H.: Weak semiprojectivity in purely infinite C*-algebras. Preprint 2002
[20] Loring, T.: Lifting Solutions to Perturbing Problems in C *-Algebras. Volume 8 of Fields Institute Monographs. Providence, RI: Amer. Math. Soc., 1997 · Zbl 1155.46310
[21] Pedersen G.K. (1999). Pullback and pushout constructions in C *-algebra theory. J. Funct. Anal. 167(2): 243–344 · Zbl 0944.46063 · doi:10.1006/jfan.1999.3456
[22] Phillips N.C. (2000). A classification theorem for nuclear purely infinite simple C *-algebras. Doc. Math. 5: 49–114 · Zbl 0943.46037
[23] Roe, J.: Lectures on coarse geometry. Volume 31 of University Lecture Series. Providence, RI: Amer. Math. Soc. 2003 · Zbl 1042.53027
[24] Rørdam, M.: Classification of nuclear, simple C *-algebras. Volume 126 of Encyclopaedia Math. Sci. Berlin: Springer, 2002 · Zbl 1016.46037
[25] Rørdam, M.: Stable C *-algebras. In: Operator algebras and applications, Volume 38 of Adv. Stud. Pure Math., Tokyo: Math. Soc. Japan, 2004, pp. 177–199 · Zbl 1065.46037
[26] Schochet C. (1984). Topological methods for C *-algebras. III. Axiomatic homology. Pacific J. Math. 114(2): 399–445 · Zbl 0491.46061
[27] Spielberg, J.S.: Weak semiprojectivity for purely infinite C*-algebras. http://arxiv.org/list/math.OA/0206185, 2002 · Zbl 1137.46037
[28] Spielberg, J.S.: Semiprojectivity for certain purely infinite C *-algebras. http://arxiv.org/list/math.OA/0102229, 2001 · Zbl 1175.46065
[29] Wells, R.O. Jr.: Differential analysis on complex manifolds. Volume 65 of Graduate Texts in Mathematics Second edition. New York: Springer-Verlag, 1980 · Zbl 0435.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.