×

Discrete inertial manifolds. (English) Zbl 1146.39030

Summary: This work is devoted to attractive invariant manifolds for nonautonomous difference equations, occurring in the discretization theory for evolution equations. Such invariant sets provide a discrete counterpart to inertial manifolds of dissipative FDEs and evolutionary PDEs. We discuss their essential properties, like smoothness, the existence of an asymptotic phase, normal hyperbolicity and attractivity in a nonautonomous framework of pullback attraction.
As application we show that inertial manifolds of the Allen-Cahn and complex Ginzburg-Landau equation persist under discretization. For the Ginzburg-Landau equation we can also estimate the dimension of the inertial manifold.

MSC:

39A12 Discrete version of topics in analysis
39A70 Difference operators
34K19 Invariant manifolds of functional-differential equations
35B42 Inertial manifolds
34C40 Ordinary differential equations and systems on manifolds
Full Text: DOI

References:

[1] , and , Manifolds, Tensor Analysis, and Applications (Springer, Berlin, 1988).
[2] Ordinary Differential Equations: An Introduction to Nonlinear Analysis (de Gruyter, Berlin, 1990).
[3] Aulbach, J. Difference Equ. Appl. 3 pp 501– (1998) · Zbl 0906.39004 · doi:10.1080/10236199708808118
[4] Aulbach, J. Difference Equ. Appl. 9 pp 459– (2003)
[5] Beyn, Appl. Numer. Math. 41 pp 369– (2002)
[6] and , Attractors for Equations of Mathematical Physics (Amer. Math. Soc., Providence, RI, 2001).
[7] Chen, J. Differential Equations 139 pp 283– (1997)
[8] A Course in Functional Analysis, 2nd edition (Springer, New York, 1990). · Zbl 0706.46003
[9] Demengel, J. Math. Anal. Appl. 155 pp 177– (1991)
[10] van Dorsselaer, IMA J. Numer. Analysis 19 pp 455– (1999)
[11] Duan, Z. Angew. Math. Phys. 47 pp 432– (1996)
[12] Eden, Indiana Univ. Math. J. 39 pp 737– (1990)
[13] Farkas, J. Dynam. Differential Equations 14 pp 549– (2002)
[14] Fenichel, Indiana Univ. Math. J. 21 pp 193– (1971)
[15] Foias, Nonlinearity 4 pp 591– (1991)
[16] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics Vol. 840 (Springer, Berlin, 1981).
[17] Bifurcation of Maps and Applications (North-Holland, Amsterdam, 1979).
[18] Jones, J. Math. Anal. Appl. 219 pp 479– (1998)
[19] Jones, J. Differential Equations 123 pp 588– (1995)
[20] and , Methoden der analytischen Störungsrechnung und ihre Anwendungen (B. G. Teubner, Stuttgart, 1978).
[21] Kloeden, J. Difference Equ. Appl. 6 pp 32– (2000) · Zbl 0961.39007 · doi:10.1080/10236190008808212
[22] Kobayasi, Adv. Math. Sci. Appl. 3 pp 161– (1993/94)
[23] Kobayasi, Differential Integral Equations 8 pp 1117– (1995) · Zbl 0834.47037
[24] Kobayasi, Proc. Amer. Math. Soc. 127 pp 1143– (1999)
[25] Polylogarithms and associated Functions (North-Holland, New York, 1982).
[26] Lord, SIAM J. Numer. Anal. 34 pp 1483– (1997)
[27] and , Attractive invariant manifolds for maps: Existence, smoothness and continuous dependence on the map, Research Report No. 92-11, Seminar für Angewandte Mathematik, ETH Zürich (1992).
[28] Pliss, J. Differential Equations 169 pp 396– (2001)
[29] Pötzsche, Appl. Anal. 86 pp 687– (2007)
[30] Dissipative delay endomorphisms and asymptotic equivalence, to appear in: Proceedings of the 11th International Conference on Difference Equations and Applications, Kyoto, Japan, 2006.
[31] Pötzsche, Topol. Methods Nonlinear Anal. 24 pp 107– (2004) · Zbl 1075.39014 · doi:10.12775/TMNA.2004.021
[32] and , Dynamics of Evolutionary Equations, Applied Mathematical Sciences Vol. 143 (Springer, Berlin, 2002).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.