×

An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work. (English) Zbl 1145.82341

Summary: An improved lattice Boltzmann model is proposed for thermal flows in which the viscous heat dissipation and compression work by the pressure can be neglected. In the improved model, the whole complicated gradient term in the internal energy density distribution function model is correctly discarded by modifying the velocity moments’ condition. The corresponding macroscopic energy equation is exactly derived through Chapman-Enskog expansion. In particular, based on the improved thermal model, a double-distribution-function lattice BGK model is developed for two-dimensional Boussinesq flow, which is a typical flow with negligible viscous heat dissipation and compression work. A two-dimensional plane flow and the natural convection of air in a square cavity with various Rayleigh numbers are simulated by using the double-distribution-function lattice BGK model. It is found that there is excellent agreement between the present results with the analytical or benchmark solutions.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76M28 Particle methods and lattice-gas methods
76R10 Free convection
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] DOI: 10.1209/0295-5075/15/6/007 · doi:10.1209/0295-5075/15/6/007
[2] DOI: 10.1103/PhysRevLett.67.3776 · doi:10.1103/PhysRevLett.67.3776
[3] DOI: 10.1209/0295-5075/17/6/001 · Zbl 1116.76419 · doi:10.1209/0295-5075/17/6/001
[4] Succi S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[5] DOI: 10.1016/0370-1573(92)90090-M · doi:10.1016/0370-1573(92)90090-M
[6] DOI: 10.1209/0295-5075/9/4/008 · doi:10.1209/0295-5075/9/4/008
[7] DOI: 10.1146/annurev.fluid.30.1.329 · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[8] DOI: 10.1103/PhysRevE.68.036706 · doi:10.1103/PhysRevE.68.036706
[9] DOI: 10.1016/0378-4371(93)90356-9 · Zbl 0941.82527 · doi:10.1016/0378-4371(93)90356-9
[10] DOI: 10.1103/PhysRevE.47.R2249 · doi:10.1103/PhysRevE.47.R2249
[11] DOI: 10.1103/PhysRevE.50.2776 · doi:10.1103/PhysRevE.50.2776
[12] DOI: 10.1007/BF02181274 · Zbl 0939.82038 · doi:10.1007/BF02181274
[13] DOI: 10.1103/PhysRevE.70.016703 · doi:10.1103/PhysRevE.70.016703
[14] DOI: 10.1209/0295-5075/21/3/009 · doi:10.1209/0295-5075/21/3/009
[15] DOI: 10.1016/0142-727X(95)00052-R · doi:10.1016/0142-727X(95)00052-R
[16] DOI: 10.1103/PhysRevE.54.3614 · doi:10.1103/PhysRevE.54.3614
[17] DOI: 10.1103/PhysRevE.55.2780 · doi:10.1103/PhysRevE.55.2780
[18] DOI: 10.1142/S0217979203017060 · doi:10.1142/S0217979203017060
[19] DOI: 10.1016/j.compfluid.2003.05.001 · Zbl 1071.76044 · doi:10.1016/j.compfluid.2003.05.001
[20] DOI: 10.1006/jcph.1998.6057 · Zbl 0919.76068 · doi:10.1006/jcph.1998.6057
[21] DOI: 10.1103/PhysRevE.68.026701 · doi:10.1103/PhysRevE.68.026701
[22] DOI: 10.1103/PhysRevE.70.066310 · doi:10.1103/PhysRevE.70.066310
[23] DOI: 10.1103/PhysRevE.75.036704 · doi:10.1103/PhysRevE.75.036704
[24] DOI: 10.1002/fld.337 · Zbl 1014.76071 · doi:10.1002/fld.337
[25] DOI: 10.1016/0017-9310(76)90168-X · Zbl 0328.76066 · doi:10.1016/0017-9310(76)90168-X
[26] DOI: 10.1007/BF02179966 · Zbl 1106.82366 · doi:10.1007/BF02179966
[27] DOI: 10.1103/PhysRevE.54.6323 · doi:10.1103/PhysRevE.54.6323
[28] DOI: 10.1023/B:JOSS.0000015179.12689.e4 · Zbl 0939.82042 · doi:10.1023/B:JOSS.0000015179.12689.e4
[29] DOI: 10.1006/jcph.2000.6616 · Zbl 0979.76069 · doi:10.1006/jcph.2000.6616
[30] DOI: 10.1103/PhysRevE.61.5307 · doi:10.1103/PhysRevE.61.5307
[31] DOI: 10.1007/BF01049965 · Zbl 0943.82552 · doi:10.1007/BF01049965
[32] DOI: 10.1103/PhysRevE.48.4823 · doi:10.1103/PhysRevE.48.4823
[33] DOI: 10.1063/1.868766 · Zbl 1027.76631 · doi:10.1063/1.868766
[34] DOI: 10.1063/1.869307 · Zbl 1185.76873 · doi:10.1063/1.869307
[35] Guo Z. L., Chin. Phys. 11 pp 366–
[36] DOI: 10.1063/1.1597681 · Zbl 1186.76148 · doi:10.1063/1.1597681
[37] DOI: 10.1142/S0217979203017485 · doi:10.1142/S0217979203017485
[38] DOI: 10.1103/PhysRevE.72.016703 · doi:10.1103/PhysRevE.72.016703
[39] Kays W. M., Convective Heat and Mass Transfer (1993)
[40] DOI: 10.1142/S0129183102003966 · Zbl 1082.76591 · doi:10.1142/S0129183102003966
[41] DOI: 10.1016/j.ijheatmasstransfer.2005.07.046 · Zbl 1189.76529 · doi:10.1016/j.ijheatmasstransfer.2005.07.046
[42] DOI: 10.1002/fld.1650030305 · doi:10.1002/fld.1650030305
[43] DOI: 10.1002/fld.1650110206 · Zbl 0711.76072 · doi:10.1002/fld.1650110206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.