×

Coherent states for the Hartmann potential. (English. Russian original) Zbl 1145.81380

Theor. Math. Phys. 155, No. 3, 884-895 (2008); translation from Teor. Mat. Fiz. 155, No. 3, 439-452 (2008).
Summary: We obtain the coherent states for a particle in the noncentral Hartmann potential by transforming the problem into four isotropic oscillators evolving in a parametric time. We use path integration over the holomorphic coordinates to find the quantum states for these oscillators. The decomposition of the transition amplitudes gives the coherent states and their parametric-time evolution for the particle in the Hartmann potential. We also derive the coherent states in the parabolic coordinates by considering the transition amplitudes between the coherent states and eigenstates in the configuration space.

MSC:

81R30 Coherent states
81S40 Path integrals in quantum mechanics
Full Text: DOI

References:

[1] E. Schrödinger, Naturwissenschaften, 14, 664–666 (1926). · JFM 52.0967.01 · doi:10.1007/BF01507634
[2] R. J. Glauber, Phys. Rev. Lett., 10, 84–86 (1963); Phys. Rev., 130, 2529–2539 (1963). · doi:10.1103/PhysRevLett.10.84
[3] M. M. Nieto and L. M. Simmons Jr., Phys. Rev. Lett., 41, 207–210 (1978). · doi:10.1103/PhysRevLett.41.207
[4] L. S. Brown, Amer. J. Phys., 41, 525–530 (1973). · doi:10.1119/1.1987282
[5] D. Bhaumik, B. Dutta-Roy, and G. Ghosh, J. Phys. A, 19, 1355–1364 (1986). · doi:10.1088/0305-4470/19/8/017
[6] A. ten Wolde, L. D. Noordam, A. Lagendijk, and H. B. van Linden van den Heuvell, Phys. Rev. Lett., 61, 2099–2101 (1988). · doi:10.1103/PhysRevLett.61.2099
[7] H. Goldstein, Classical Mechanics [in Russian], Nauka, Moscow (1975); English transl., Addison-Wesley, Reading, Mass. (1980).
[8] P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math., 218, 204–219 (1965). · Zbl 0151.34901 · doi:10.1515/crll.1965.218.204
[9] I. H. Duru and H. Kleinert, Phys. Lett. B, 84, 185–188 (1979); Fortschr. Phys., 30, 401–435 (1982). · doi:10.1016/0370-2693(79)90280-6
[10] T. Toyoda and S. Wakayama, Phys. Rev. A, 59, 1021–1024 (1999). · doi:10.1103/PhysRevA.59.1021
[11] N. Ünal, Found. Phys., 28, 755–762 (1998). · doi:10.1023/A:1018897719975
[12] N. Ünal, Phys. Rev. A, 63, 2105 (2001); Turk. J. Phys., 24, 463–472 (2000).
[13] N. Ünal, Canad. J. Phys., 80, 875–881 (2002). · doi:10.1139/p02-040
[14] N. Ünal, ”Path integration and coherent states for the 5D hydrogen atom,” in: Fluctuating Paths and Fields (W. Janke, A. Pelster, and H.-J. Schmidt, eds.), World Scientific, River Edge, N. J. (2001), pp. 73–81.
[15] T. Toyoda and S. Wakayama, Phys. Rev. A, 64, 2110 (2001). · doi:10.1103/PhysRevA.64.032110
[16] H. Hartmann, Theor. Chim. Acta, 24, 201–206 (1972). · doi:10.1007/BF00641399
[17] B. P. Mandal, Internat. J. Mod. Phys. A, 15, 1225–1234 (2000).
[18] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatlit, Moscow (1971); English transl.: Tables of Integrals, Series, and Products, Acad. Press, New York (1980). · Zbl 0918.65002
[19] Gh. E. Drägänascu, C. Campigotto, and M. Kibler, Phys. Lett. A, 170, 339–343 (1992). · doi:10.1016/0375-9601(92)90883-N
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.